A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Identically Self-Dual Matroids
[thesis]
<p>In this thesis we focus on identically self-dual matroids and their minors. We show that every sparse paving matroid is a minor of an identically self-dual sparse paving matroid. The same result is true if the property sparse paving is replaced with the property of representability and more specifically, F-representable where F is a field of characteristic 2, an algebraically closed field, or equal to GF(p) for a prime p = 3 (mod 4). We extend a result of Lindstrom [11] saying that no
doi:10.26686/wgtn.17065136
fatcat:iuv7oera7bfedfvzhu242w5fny