Properties of H+-translocating adenosine triphosphatase in vacuolar membranes of SAccharomyces cerevisiae

Y Kakinuma, Y Ohsumi, Y Anraku
1981 Journal of Biological Chemistry  
The properties of Mg2+-ATPase in the vacuole of Saccharomyces cerevisiae were studied, using purified intact vacuoles and right-side-out vacuolar membrane vesicles prepared by the method of Y. Ohsumi and Y. Anraku ((1981) J. Biol. Chem. 256, 2079). The enzyme requires Mg2+ ion but not Ca2+ in. Cu2+ and Zn2+ ions inhibit the activity. The optimal pH is at pH 7.0. The enzyme hydrolyzes ATP, GTP, UTP, and CTP in this order and the Km value for ATP was determined as 0.2 mM. It does not hydrolyze
more » ... es not hydrolyze ADP, adenosyl-5'-yl imidodiphosphate, or p-nitrophenyl phosphate. ADP does not inhibit hydrolysis of ATP by the enzyme. The activities of intact vacuoles and of vacuolar membrane vesicles were stimulated 3- and 1.5-fold, respectively, by the protonophore uncoupler 3,5-di-tert-butyl-4-hydroxybenzilidenemalononitrile and the K+/H+ antiporter ionophore nigericin. Sodium azide at a concentration exerting an uncoupler effect also stimulated the activity. The activity was sensitive to the ATPase inhibitor N,N'-dicyclohexylcarbodiimide, but not to sodium vanadate. The ATP-dependent formation of an electrochemical potential difference of protons, measured by the flow-dialysis method, was determined as 180 mV, with contribution of 1.7 pH units, interior acid, and of a membrane potential of 75 mV. It is concluded that the Mg2+-ATPase of vacuoles is a new marker enzyme for these organelles and is a N,N'-dicyclohexylcarbodiimide-sensitive, H+-translocating ATPase whose catalytic site is exposed to the cytoplasm.
pmid:6116710 fatcat:omghckxmxrhv7iim3vqneur5zm