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I. INTRODUCTION

Ptychography is a nonholographic solution of the phase problem. It is a
method of calculating the phase relationships between different parts of a
scattered wave disturbance in a situation where only the magnitude (intensity
or flux) of the wave can be physically measured. Its usefulness lies in its ability
(like holography) to obtain images without the use of lenses, and hence to lead
to resolution improvements and access to properties of the scattering medium
(such as the phase changes introduced by the object) that cannot be easily
obtained from conventional imaging methods. Unlike holography, it does not

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 1
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV

87
ISSN 1076-5670 Copyright 2008, Elsevier Inc.
DOI: 10.1016/S1076-5670(07)00003-1 All rights reserved.



88 RODENBURG

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

need a stable reference wave; the only interferometer used in ptychography is
diffraction interference occurring in the object itself.

The concept of ptychography was originated by the late Walter Hoppe
between about 1968 and 1973 (Hoppe, 1969a, 1969b; Hoppe and Strube,
1969; Hegerl and Hoppe, 1970, 1972). In its original formulation it was
difficult to contemplate how to implement an actual experimental proof of
the idea at short (atomic scale) wavelengths, other than for a crystalline object
in a scanning transmission electron microscope (STEM). Hoppe and Strube
(1969) demonstrated the idea experimentally using visible light optics, but at
the time that Hoppe was thinking about these ideas, STEMs were simply not
sufficiently developed (particularly the detectors available) to undertake the
necessary measurements. At that time, the benefits of the technique were ill
defined and offered no clear improvements over existing imaging, diffraction,
and holographic methods. In fact, when a proof of principle was eventually
established by Nellist et al. (1995), it was discovered that ptychography did
have one uniquely and profoundly important advantage over all other phase-
retrieval or imaging techniques: it is not subject to the limitations of the
coherence envelope (the “information limit”), which today is still regarded
as the last hurdle in optimal electron imaging.

In view of the recent advances in iterative solution of the ptychographic
data set (see Section IV.C) and their experimental implementation in visible
light optics and hard X-ray imaging, a review of the neglected strengths of
the ptychographical principle is of benefit. Recent years have seen a growing
interest in iterative solutions of the phase problem. In most modern work,
Hoppe’s pioneering thoughts have been entirely neglected. This is unfortunate
for two reasons. First is the scholarly misrepresentation of the precedence of
certain key ideas in the history of the field of phase problems. Second, a true
appreciation of what ptychography encompasses, especially with respect to
“conventional” diffractive imaging methods, means that a great opportunity
has yet to be fully exploited. This Chapter attempts to demonstrate these
advantages are and why this Cinderella of the phase-retrieval story may be
on the brink of revolutionizing short-wavelength imaging science.

II. PTYCHOGRAPHY IN CONTEXT

This section places ptychography in the context of other phase-retrieval
methods in both historical and conceptual terms.

A. History

Recovery of the lost phase (or relative phase) by some calculation method
is still considered a problem because when these issues were first addressed
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(before World War II), it appeared that in certain scattering geometries
(especially those most easily accessible experimentally) a solution could not
exist, and if it did exist, it would be very ill conditioned mathematically. X-ray
crystallography was the first experimental discipline to admit to the conse-
quences of lost phase. In fact, given that large quantities of stereochemical a
priori information is often available, the crystalline diffraction phase problem
is much more tractable than the generalized phase problem. Indeed, it could
be argued that Watson and Crick’s discovery of the structure of DNA (Watson
and Crick, 1953) was itself an ad hoc solution to a phase problem – they had
access to the intensity of the scattered X-ray diffraction pattern from a crystal
composed of DNA molecules and essentially found a “solution” (a physical
distribution of atoms) that was consistent with that intensity and with the
known stereochemistry constraints of the constituent amino acids. This use
of a priori information is an important characteristic of all solutions to the
phase problem.

The key advantage of phase-retrieval methods in the context of imaging is
that image formation can be unshackled from the difficulties associated with
the manufacture of high-quality lenses of large numerical aperture. In some
fields, such as stellar interferometry (Michelson, 1890), it is only possible to
record a property related to the intensity of the Fourier transform of the object.
The creation of an image from these data is then a classic phase problem
(in this case, rather easily solvable given that the a priori information that
the object in question is finite, of positive intensity, and is situated on an
empty background). In the field of visible wavelength optical microscopy,
little need exists to solve the phase problem because very good lenses of very
large numerical aperture can be relatively easily manufactured (although a
phase problem still exists in the sense that the image itself is recorded only in
intensity). For short-wavelength microscopies (using X-rays or high-energy
electrons), good-quality lenses are not easily manufactured. For example, the
field of electron imaging has recently seen great progress in the manufacture
of non-round lenses correctors (for which spherical aberration need not be
positive, as with a round magnetic lens), a scheme first proposed by Scherzer
(1947) but which has only recently become feasible with the advent of
powerful inexpensive computers that can be interfaced to very high-stability
power supplies. However, the cost of such systems is high (typically of the
order of $1000 per corrector), and the gains in resolution over existing round
magnetic lenses are only of an order of a factor of 2 or so. In the case of
X-ray microscopy, the zone plate remains the predominant lens technology,
but this technology requires manufacturing precision of at least the final
requisite resolution of the lens itself; making a sufficiently thick zone plate
with very high lateral definition (< 50 nm) difficult, especially for hard X-
rays. For example, compare the best resolution obtainable from such a lens
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(also ∼50 nm) with the “resolution” of conventional X-ray diffraction using
the same wavelength; notwithstanding the fact that the object of interest (the
unit cell) must be amenable to crystallization, the effective resolution of the
“image” (an estimate of that unit cell) is roughly the same as the wavelength:
∼ 0.1 nm.

In the case of aperiodic objects (unique structures), solution of the phase
problem has evolved via several diverse routes in communities that have
historically had little interaction. The most elegant direct solution – indeed,
so direct that in its original form it does not require any mathematical
computation at all – is holography. Gabor (1948) first formulated this concept
in an amazingly concise and insightful short letter with the title “A New
Microscopical Principle.” His interest was in overcoming the rather profound
theoretical limitations of round electron lenses, a fact that had been realized by
Scherzer (1936) before the war and eloquently quantified by him shortly after
the war (Scherzer, 1949). It was clear that aberrations intrinsic in the electron
lens could not be overcome (although, as already discussed, later work on
non-round lenses have circumvented these difficulties). Gabor’s idea is briefly
discussed here, but it should be noted that the use of a strong and known
reference can record an analog of the phase of a wave field. Reconstruction of
the actual electron image was envisaged as a two-step process, the second step
performed using visible light optics that mimicked the aberrations present in
the electron experiment. This is an example of a phase problem solution in
conjunction with the use of a “poor” lens so as to improve the performance
of that lens. In fact, the current popular perception of holography is as a
method of generating the illusion of three-dimensional (3D) images; the 3D
information in ptychography is discussed in Section IV.B.

The pure diffraction intensity (PDI) phase problem is defined as occurring
in a situation where only one diffraction pattern can be measured in the
Fraunhofer diffraction plane and is recorded without the presence of any
lenses, physical apertures, or holographic reference wave. Even today many
physicists unfamiliar with the field would declare that the PDI problem must
be absolutely insolvable, given that the phase of a wave is known to encode
most of the structural information within it. A common gimmick is to take
two pictures of different people, Fourier transform both pictures, and then
exchange the modulus of those transforms while preserving their phase. If
these are then both transformed back into images, the two faces appear with
reasonable clarity in the same image in which the Fourier domain phase
was preserved. In other words, the modulus (or intensity) information in
the Fourier domain is far less important in defining the structure an image
than its phase. If the phase is completely lost, the chances of regaining it in
some way are negligible. However, when the object is isolated and is not too
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large relative to the wavelength and the scattering angles being processed, this
problem is now known to be almost always tractable.

The provenance of the accumulated knowledge that led to this rather
astonishing conclusion is complicated and merits its own lengthy review. In
the context of X-ray crystallography, Bernal and his many eminent research
students laid much of the groundwork for constructing 2D and 3D maps of
the unit cell from diffraction patterns taken through many different angles.
Patterson (1934) noted that the Fourier transform of the intensity of the
diffraction pattern is the autocorrelation function of the unit cell. Absence
of phase is therefore equivalent to having an estimate of the object correlated
with the complex conjugate of itself. Coupled with further a priori informa-
tion about related crystalline structures and stereochemistry, this and similar
conceptual tools led to the systematic solution of a wide range of complicated
organic molecules, exemplified by the work of Hodgkin, who determined
the structure of penicillin and later vitamin B12 (Hodgkin et al., 1956) using
similar methods.

In the context of crystallography, the term direct methods (pioneered by
workers such as Hauptman, Karle, Sayre, Wilson, Woolfson, Main, Sheldrick,
and Giacovazzo; see for example the textbook by Giacovazzo, 1999) refers to
computational methods that do not necessarily rely on the extremely detailed
knowledge of stereochemistry necessary to propose candidate solutions that fit
the diffraction data (or, equivalently, the autocorrelation (Patterson) function).
Instead, the likelihood of the phase of certain reflections is weighted in view
of how the corresponding Bragg planes must, in practice, fill space. Here
the essential a priori knowledge is that the object is composed of atoms
that cannot be arbitrarily close to one another. Direct methods can be used
to solve routinely the X-ray diffraction problem for unit cells containing
several hundreds of atoms (not counting hydrogen atoms), beyond which the
probabilistic phase relationships become weak. A variety of other techniques
are available for larger molecules – substituting a very heavy atom at a known
site within the unit cell (this can be thought of acting as a sort of holographic
reference for the scattered radiation) or changing the phase of the reflection of
one or more atoms by obtaining two diffraction patterns at different incident
energies, above and below an absorption edge.

Independent of the crystallographic problem, an entirely different approach
to the recovery of phase was derived in the context of the mathematical
structure of the Fourier transform itself, especially as it relates to analytic
functions. In any one experiment, an X-ray diffraction pattern explores the
surface of a sphere (the Ewald sphere) in a 3D reciprocal space, which is the
Fourier transform of the electron density in real space. However, periodicity in
real space confines the relevant Fourier data to exist on the reciprocal lattice.
Classical X-ray diffraction is about Fourier series, not explicitly Fourier
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transforms. In contrast, there are a variety of physical problems in which
the continuous Fourier transform is the crucial element. One such class is
the so-called half-plane problem, wherein it is known, for one reason or
another, that the Fourier transform of a function only has finite magnitude
at positive (or negative) frequencies, while negative (or positive) frequencies
all have zero magnitude. An example would be a reactive electrical system
with a complicated frequency response subjected to a step change in the
input voltage (or current). Here the half-plane is in the time domain, but
this places constraints on the phase of the allowable frequency components.
Without further detail, depending on the form of the underlying differential
equation that determines a response of a system, the solution could sometimes
be expressed in terms of Laplace transforms (identical to the Fourier transform
except for the lack of the imaginary number in the exponential). More gener-
ally, a solution could be composed of a Fourier integral with the “frequency”
component in the exponential taking on any complex value (thus embracing
both the Fourier and Laplace transforms). The theory of the resulting analytic
function of the complex variable that arises in this class of situation has
been extensively investigated from a purely mathematical standpoint (see, for
example, Whittaker and Watson, 1950). This analytic approach leads to the
Kramers–Kronig relations in dielectric theory (Kramers, ?; Kronig, ?) and a <ref:Kra1927?>

<ref:Kro1926?>host of other results in a wide range of fields, including half-plane methods
as a means of improving resolution in the electron microscope (Misell, 1978;
Hohenstein, 1992). In the latter, the half-plane is a physical aperture covering
half of the back focal plane of a conventional imaging lens. It is certainly
true that Bates, who went on to contribute to variants of the ptychographical
principle with Rodenburg (see Section IV.D) embraced this same “analytical
solution” school of thought.

In an original and oblique approach to the phase problem, Hoppe proposed
the first version of the particular solution to the phase problem explored in
this Chapter. Following some earlier work (Hoppe, 1969a, 1969b; Hoppe and
Strube, 1969), Hegerl and Hoppe (1970) introduced the word ptychography
to suggest a solution to the phase problem using the convolution theorem, or
rather the “folding” of diffraction orders into one another via the convolution
of the Fourier transform of a localized aperture or illumination function in the
object plane. Ptycho comes from the Greek word “πτυξ” (Latin transliteration
“ptux”) meaning “to fold” (as in a fold in a garment). We presume the authors
were following the example set by Gabor (1949), who constructed the term
holography from the Greek “ολο” (Latin transliteration “holo”), meaning
“whole”: the whole wave disturbance being both its modulus and phase over
a surface in space. Like holography, ptychography aspires to reconstruct the
entire wave field scattered from an object. Unlike holography, it does not
require a reference beam; it derives its phase knowledge by recording intensity
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only in the diffraction plane and then, via properties of the convolution
theorem, solving directly for the structure of the object. Exactly how this can
be achieved and put into practice is the primary focus of this Chapter.

B. The Relative Strength of Diffractive and Imaging Methods

Although not widely disseminated, it is now recognized that diffraction phase-
retrieval microscopy has certain distinct advantages over conventional forms
of imaging and holography. The key requirement is the coherent interference
of different wave components. In the case of conventional transmission
imaging, a lens is used to form an image. Beams that pass along different paths
through the lens are required to arrive at a point in the image plane in such a
way that their relative phase is well determined by a particular path difference.
In the case of the short-wavelength microscopies (electron and X-ray) the
stability and reproducibility of this path difference is difficult to achieve.
Vibration, lens instability, energy spread in the illuminating beam, and other
sources of laboratory-scale interference can easily sabotage the constancy
of the pertinent path difference, leading to the incoherent superposition of
waves. The establishment of the appropriate path length is itself problematic
if good-quality lenses are unavailable. It should noted that even in the context
of so-called incoherent imaging, where the object of interest is self-luminous
or illuminated by an incoherent source of radiation, there is still a requirement
that the waves emanating or being scattered from any point in the object
interfere with themselves coherently when they arrive in the image plane.
In the case of holography, where a reference wave is added to a wave field
of interest (again, one that has been scattered from the object of interest),
the requirements for mechanical stability and the absence of other sources of
experimental error (arising, say, from ripple on the lens supplies in the case of
electron holography) are extremely demanding.

In contrast to these conventional imaging methods, so-called diffractive
imaging, wherein an estimate of the object is made indirectly from solving
the phase problem in the diffraction pattern scattered by it, is now generally
recognized as having certain experimental advantages (even though there are
also a number of potentially grave disadvantages). In relation to the question
of path length discussed previously, the great strength of diffraction is that the
interferometer used to effect the encoding of structural information onto the
wave field is (at least in the case of atomic-scale wavelength radiations) on
the same dimension as the atoms themselves. The requirement to re-interfere
nonparallel wave components that have traversed substantial distances (mil-
limeters or more) through the laboratory environment is removed. This is the
great experimental strength of diffraction – it is well known that rather crude
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instrumentation can undertake reasonably accurate diffraction measurements.
As an undergraduate, I was required to measure the spacing of the atomic
planes in NaCl using a benchtop X-ray diffractometer during the course of a
single afternoon. In contrast to conventional imaging or holography at atomic-
scale wavelengths, diffraction is experimentally relatively trivial.

In the case of high-energy electrons, the experimental robustness of dif-
fraction relative to imaging is observed simply by comparing the breadth
of reciprocal space (scattering angle) in the selected area diffraction pattern,
which has significant intensity with the corresponding width of the bright-field
diffractogram (that is, the Fourier transform of the bright-field image). If a
microscope was perfectly stable, then the diffractogram would be as wide in k-
space (scattering angle) as the diffraction pattern. In fact, the former is quickly
attenuated by the inevitable lens and high-tension instabilities. When these
errors are coupled with strong aberrations in the imaging lens, the effective
numerical aperture of an electron lens is severely attenuated by an envelope
function (Frank, 1973). Wave components scattered through large angles (in
fact, no more than a few degrees) are incapable of contributing usefully to
the image. Since image resolution is proportional to the effective numerical
aperture of the lens, then resolution is severely compromised.

Thus, if it is possible to dispense with the lens or any other form of
macroscopic interferometry and instead rely on interference arising from
waves scattered directly from the atoms themselves, it should be possible
to obtain much more information about the structure of a specimen, without
the expense and complication of a short-wavelength imaging lens. Certain
experimental challenges are removed, albeit at the price of introducing a
difficult computational problem. Ptychography is essentially a method of
blending these strengths of diffraction with a further experimental variation
(the collection of more than one diffraction pattern), but which thereby greatly
reduces the complexity and difficultly of solving the phase problem while at
the same time greatly improving the applicability of the diffractive imaging
method, most importantly imaging objects of infinite size even in the presence
of partial coherence in the illuminating beam.

C. The Definition of Ptychography

Referring directly to Hoppe’s series of three papers in 1969, where these
ideas were first suggested, might lead to the conclusion that all finite object
solutions to the phase problem (including the so-called oversampling method
of the PDI problem, Miao et al., 1999) fall under the scope of ptychography.
However, such a broad definition would not be usefully discriminating.
Although Hoppe clearly understood that it should be possible to solve the
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phase problem from a single diffraction pattern (assuming it is known that the
object is finite), he pointed out that this would be exceedingly difficult, at least
using the computational techniques available at that time. The main thrust of
his argument in the 1969 articles was that the ambiguities that occur when
only a single diffraction pattern is recorded can immediately be resolved if
it is possible to either move the specimen relative to a defining aperture, or
relative to some sort of illumination function, and record a second diffraction
pattern. In a later article (Hegerl and Hoppe, 1972), the illumination function
was not moved, but it was changed in its functional form.

For the purposes of this Chapter, the term ptychography is reserved to apply
to a method that fulfills at least all of the following three characteristics:

1. The experimental arrangement comprises a transmission object that is
illuminated by a localized field of radiation or is isolated in some way by
an aperture mounted upstream of the object. Scattered radiation from this
arrangement provides an interference pattern (usually, but not necessarily,
a Fraunhofer diffraction plane) at a plane where only intensity can be
recorded.

2. At least two such interference patterns are recorded with the illumination
function (or aperture function) changed or shifted with respect to the object
function by a known amount.

3. A calculation is performed using at least two of these patterns in order to
construct an estimate of the phase of all diffraction plane reflections, or,
equivalently, of the phase and amplitude changes that have been impressed
on the incident wave in real space by the presence of the object.

As it stands, this definition certainly differentiates ptychography from
many competing solutions to the phase problem. We will reserve the term
pure diffractive imaging (PDI) to apply to a solution of the Fraunhofer
phase problem in which only one diffraction pattern is recorded. This is
quite distinct from ptychography, although in fact the solution of the PDI
problem can be thought of as relying on the convolution theorem (see
Section II.F), and hence being due to the ptycho element of ptychography.
I would argue, however, that once the phase problem is formulated in terms of
the convolution theorem, then the direct solution that follows via the Fourier
shift theorem is so compelling that it would seem absurd to rely on only one
diffraction pattern, provided of course that there is some way of achieving
the shift of the object relative to the illumination function or aperture in some
experimentally feasible way. For this reason, I contend that the recording of at
least two interference patterns is a defining component of ptychography, quite
independent of whether the Greek meaning of the word actually embraces this
specification.
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This definition thus also renders ptychography distinct from the through-
focal-series (Misell, 1973) or transport of intensity (see for example Gureyev
et al., 1995) solutions to the phase problem. Although in both of these cases
multiple interference patterns (in this case, Fresnel diffraction patterns) are
collected, the illumination (usually a plane wave) always remains fixed and
unchanged with respect to the object of interest. The same applies in the case
of holography.

It could be argued that any method that alters the illumination condition,
or the way in which the object is presented to the field of radiation, and
subsequently records more than two intensity distribution as a means of
solving for phase (e.g., McBride et al., 2005) falls within the present def-
inition. In fact, as will be shown in the following text, the main practical
implementations of ptychography use only a lateral shift of the object or
illumination function. Imposing this restriction would, ironically, discount
one of few articles published by Hegerl and Hoppe (1972) demonstrating
computationally what they had themselves called ptychography, although
there is really no doubt that Hoppe had originally conceived of the scheme
in terms of lateral shifts alone (Hoppe, 1982).

A further issue in its exact definition is whether ptychography relates
only to crystalline objects. At one level this point is irrelevant in that any
image, regardless of the size of its field of view, can always be represented
computationally as one very big unit cell. Indeed, all PDI methods do
exactly this, as does any image processing algorithm that relies on equally
spaced samples in the reciprocal space; this includes any method that uses
a fast Fourier transform. However, there is a common perception, fueled if
only by Hoppe himself in a late review (Hoppe, 1982), that ptychography
essentially relates only to physically periodic objects. That is to say, as
the object, aperture or illumination field is shifted laterally, the next part
of the object to be illuminated by radiation is identical to that part of it
that has shifted out of the field of illumination. It is certainly true that the
simplest computational implementation of ptychography does only relate to
this very specific crystalline case. However, more recent work has shown that
the crystalline restriction simply needs not apply. For the purposes of this
Chapter, the three characteristics enumerated above, will be expanded with
the fourth:

4. When the change of illumination condition is a simple lateral shift (or shift
of the object), then ptychography allows a large number of interference
patterns (as many as required) to be processed in order to obtain an image
of a nonperiodic structure of unlimited size.
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D. A Qualitative Description of Ptychography

A good starting point is to describe qualitatively the principle of ptychography
(as defined above) using the very simplest manifestation of the method, as first
described by Hoppe (1969a, 1969b) and Hoppe and Strube (1969). Detailed
mathematical treatments, and a discussion of the principal approximations
that are implicitly assumed in this section, are presented in later sections.

Consider a lens focusing a source of radiation onto a crystalline object of
interest as shown in Fig. 1. (In this Chapter, optical components are drawn
on a horizontal optic axis with radiation incident from the left.) Assume (for
the time) being that the lens is aberration free, it has a sharp-edged circular
aperture in its back focal plane, and the beam crossover at the object plane
is perfectly focused. In other words, the illumination function in the plane of
the entrance surface of the object is of the form of an Airy disk function (see,
for example, Born and Wolf, 1999). Let us also assume that this illumination
function interacts multiplicatively with the object function; the object function
will be modeled as a (possibly strong) phase transmission function that

FIGURE 1. Elementary crystalline ptychographical experimental setup in the scanning trans-
mission electron microscope (STEM) configuration. Radiation incident from the left impinges on a
focusing lens that has a sharply defined diaphragm. The crystalline specimen lies in or near the plane
of the beam crossover (this produces the illumination function incident on the specimen, often called
a probe in the STEM literature). Downstream of the specimen a diffraction pattern evolves. Each
diffraction order is spread into a disk corresponding to the range of incident illumination angles in
the beam. We will assume that the distances between the lens and the object and the object and the
detector plane are large: the detector plane lies in the Fraunhofer regime.

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 11
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



98 RODENBURG

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

may also attenuate the wave as it passes through the object. Note that the
transmission function is not the same as the atomic (or optical) potential
function; we are not assuming the Born approximation (see Section III.C),
but we are assuming that the object is quasi-2D (Cowley, 1995).

In the Fraunhofer diffraction plane, a very large distance downstream of
the object, the far-field diffraction plane is observed. If this periodic object
had been illuminated by a plane wave, the diffraction pattern would, as usual,
consist of a series of spikes of intensity. In fact, because there is a range of
incident vectors subtending from the pupil of the lens, each diffraction peak
is spread out into the shape of a disk. In the absence of a specimen, there is
only one disk – simply a shadow image projection of the aperture in the back
focal plane of the lens. When the crystalline object is in place, it is possible
to arrange for the aperture size to be such that the diffracted disks overlap one
another as shown in Fig. 2(a). For what follows in this section, we require that
there is a point between any two diffracted discs where only those two disks
overlap with one another (i.e., there are no multiple overlaps). If the source
of radiation is sufficiently small and monochromatic, then illumination over

(a) (b)

(c) (d)

FIGURE 2. Schematic representation of the diffraction orders and phase relationships in the
STEM ptychograph. (a) Two diffracted disks lying in the Fraunhofer diffraction plane (the right-hand
side of Fig. 1). (b) Phase relationship of the underlying amplitudes of these two disks. The square roots
of the measured intensities give the lengths of the arrows, but not their phase. However, the triangle
of complex numbers must be closed, although there are two indistinguishable solutions. (c) For three
linearly positioned interfering disks. (d) For 2D functions, ambiguity in this phase problem (like in all
Fourier phase problems) is reduced because the ratio of measurements to unknowns increases.
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the back focal plane of the lens will be effectively coherent. In the Fraunhofer
plane, this means that the diffracted beams will interfere coherently within
these regions of overlap (provided other sources of experimental instability,
such as the lens, are negligible).

In the classic diffraction phase problem (where the illumination is a plane
wave), the intensity (and only the intensity) of each of the diffracted beams
can be measured: the phase is lost. In Fig. 2(a), we also measure intensity
only, but now the intensity of the sum of two diffracted amplitudes also
can be measured. Let us label these amplitudes by the complex numbers Z1
and Z2, each representing the real and imaginary components (or modulus and
phase) of the wave filling each disk. We can therefore measure |Z1|2, |Z2|2,
and, within their region of intersection, |Z1 + Z2|2. Let the phase difference
between Z1 and Z2 be an angle φ. In the complex plane, we see a relationship
between amplitudes Z1 and Z2 and their sum Z1 + Z2 (shown in Fig. 2(b)).
Because the moduli Z1, Z2 and Z1 +Z2 can be measured by taking the square
root of the intensity measured in the two disks and their region of overlap,
respectively, then there are only two values of φ (φ and −φ) that will allow
the triangle of amplitudes Z1, Z2 and Z1 +Z2 to connect with one another. In
other words, by measuring these three intensities, and assuming they interfere
with one another coherently, we can derive an estimate of the phase difference
between Z1 and Z2, but not the sense (positive or negative) of this phase
difference.

Clearly this simple experiment has greatly improved the chances of solving
the phase problem; instead of total uncertainty in the phase of either Z1
or Z2, there are now only two candidate solutions for the phase difference
between Z1 and Z2. In fact, without loss of generality, we will always assign
one of these values (say, Z1) as having an absolute phase of zero. This is
because in any diffraction or holographic experiment only the relative phase
between wave components can ever be possibly measured. Another way of
saying this is that we are concerned with time-independent solutions to the
wave equation, and so the absolute phase of the underlying waves (which
are time dependent) is lost and is of no significance – in the case of elastic
scattering, the relative phase of the scattered wave distribution has had all
the available structural information about the object impressed upon it. If the
disk of amplitude Z1 is the straight-through (or zero order) beam, then in
what follows we will always assign this as having zero phase: this particular
two-beam phase problem (i.e., the relative phase of Z2) has been completely
solved apart from the ambiguity in Z2 or Z∗

2 , where Z∗
2 is the complex

conjugate of Z2.
Now consider the interference of three beams lying in a row (Fig. 2(c)).

The underlying amplitudes of these diffracted beams are labeled as Z1, Z2,
and Z3. We now measure five intensities: three in the disks and two in the
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overlaps. These five numbers will not quite give us the six variables we
need – the modulus and phase of Z1, Z2, and Z3 – but they will give us
|Z1|, |Z2|, |Z3| and two phase differences (each of which suffer from a
positive/negative ambiguity). Assigning zero phase to Z1, we can solve for
the phase of all the diffracted beams (Z2 and Z3) to within four possible
solutions, depending on the four combinations of the ambiguous phases. It
is clear that as the number, N , of diffracted beams increases, then there
will be 2N possible solutions for the one diffraction pattern. In fact, this
2N ambiguity is a completely general feature of the phase problem in one
dimension (Burge et al., 1976) when the object space is known to be finite
(in the current case, the object and illumination function is of a particular
form that gives a very clear manifestation of the phase ambiguity). Of course,
if the three beams are not collinear, but form a triangle in a 2D diffraction
pattern so that each beam overlaps with the other two (Fig. 2(d)), then the ratio
of intensity measurements to unknowns can be increased, thereby limiting
the number of ambiguous solutions to the entire pattern. Again, even though
we are discussing a very specialized scattering geometry, the same argument
applies in all diffractive imaging methods – as the dimension of the problem
is increased, the likelihood of ambiguous solutions existing reduces (see for
example the discussion by Hawkes and Kasper, 1996).

The key benefit of ptychography is that a complete solution of the phase,
resolving the ambiguities discussed above, can be achieved by shifting either
the object function or the illumination relative to one another by a small
amount, and then recording a second set of intensity measurements. We can
think of this via the Fourier shift theorem, but to begin we restrict ourselves
to a qualitative description. In the scattering geometry of Fig. 1, a shift in the
illumination function can be achieved by introducing a phase ramp across the
illumination pupil. One way of thinking of this is via Fig. 3(a) (which is rather
exaggerated). To produce a tilt in the wave coming out of the lens (which will
consequently lead to a shift in the illumination function at the object plane),
we must rotate slightly the hemisphere of constant phase that emerges from
the lens and which results in the wavefronts being focused at the crossover at
the object plane. If the path length is increased at the top of the hemisphere
and decreased at bottom (as shown in Fig. 3(a)), then the effect is to move
the position of the illumination downward relative to the object. The path
difference changes linearly across the hemisphere. A linear phase ramp, where
the phase is equal to 2π times the path difference divided by the wavelength,
has the equivalent influence. (In what follows, we ignore the fact that this tilt
in the beam will not only shift the illumination, but also shift the diffraction
pattern in the far field; in the case of most situations of interest this latter
shift is negligible for typical lens working distances.) In the Fraunhofer plane,
one side of the zero order (unscattered beam) has therefore been advanced in
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phase (marked as point P on Fig. 3(b)), say by a factor of eiγ , and a point
near the opposite side (P ′) has been retarded in phase, say by a factor of
e−iγ . If we label the underlying amplitude of the zero-order beam as Z1, then
the complex value of the wave at P is now Z1e

iγ . Suppose now that there is a
diffracted beam of underlying amplitude Z2 (shown separately on the top right

(a) In the STEM configuration, a shift in the probe (indicated by the large pointer) can be achieved

by introducing a phase ramp in the plane waves (dotted lines) over the back focal plane of the lens

(incident beams illuminating the lens are drawn parallel). This is equivalent to tilting slightly the

hemisphere of wavefronts focusing the probe onto the object, consequently introducing the shift. This

manifests itself as the phase change over A(u, v).

(b) As the probe is shifted in real (object) space (top), a phase ramp is introduced over the undiffracted

beam in reciprocal space (lying in the Fraunhofer diffraction plane).

FIGURE 3.
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(c) At the top we draw the undiffracted beam (heavy circle) and a diffracted beam. The probe

movement has introduced phase ramps across both beams. When the spacing of the diffracted beams

is smaller (bottom circles), the equivalent points P and P ′ meet up and interfere at P ′′.

FIGURE 3. (continued)

of Fig. 3(b)). At an equivalent point P ′ the actual complex value of the wave
disturbance is now Z2e

−iγ . If these two disks overlap, then the equivalent
points P and P ′ can meet up and interfere with one another, and the total
amplitude where these points meet (P ′′ in Fig. 3(c)) will be Zs , where

Zs = Z1e
iγ + Z2e

−iγ . (1)

Before we moved the illumination by introducing these phase changes, we
measured Z1, Z2 and Z1 + Z2. With reference to the complex sum shown in
Fig. 4, let Z0 be equal to Z1+Z2. In view of the complex conjugate ambiguity,
Z1 + Z∗

2 = Zc was also a candidate solution. However, after shifting the
illumination and recording Zs , we can now discount this (wrong) solution
because if the same phase changes had been applied to Z1 +Z∗

2 , the final sum
would have been given by Zw (see Fig. 4).

This rather naïve analysis actually summarizes the entire principle of
ptychography. Later sections of the text will show that the same underlying
principle can be applied to extended noncrystalline objects and the illumina-
tion function must not be of any particular form, as long as it is reasonably
localized. The geometric and scattering theory approximations made in this
section will also be considered.
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FIGURE 4. How ptychography unlocks the complex conjugate phase ambiguity. In this dia-
gram, the lengths of filled pointers represent the square root of the intensity of our four measurements
(two from the centers of the diffracted disks, two from the overlap region at different probe positions).
Before moving the illumination (probe) the three initial measurements (top left) have two possible
solutions (top and middle right). When the phase shifts (Fig. 3) are applied (bottom left), the wrong
(−φ) phase can be discounted: the hatched pointer (Zw) is not the length of the measured modulus Zs .
All phases are plotted with respect to Z1; in practice, Z1 and Z2 rotate equal angles in opposite
directions, but the effect on the measured moduli is the same.

E. Mathematical Formulation of Crystalline STEM Ptychography

For the sake of simplicity, this section adopts an image processing-type of
nomenclature and not an optical or electron scattering nomenclature. Sec-
tion III will connect the relevant wave k-vectors with the implicit geometric
approximations made here. This section simply defines a mathematical form
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of the 2D Fourier transform as

%f (x, y) =
∫∫

f (x, y)ei2π(ux+vy) dx dy = F(u, v), (2a)

and its inverse as

%−1F(u, v) =
∫∫

F(u, v)e−i2π(ux+vy) dx dy = f (x, y), (2b)

where f (x, y) is a 2D image or transmission function that may be complex
valued, described by Cartesian coordinates x and y; F(u, v) is the Fourier
transform of f (x, y); u and v are coordinates in reciprocal space (that is, the
Fourier transform space); and for the compactness of later equations we use
the symbol % to represent the whole Fourier integral. This definition of the
Fourier transform differs from that used in some fields (including electron
microscopy, although not crystallography) by having a positive exponential.
The inclusion of the factor of 2π in the exponential renders the definition
of the inverse much simpler by not requiring a scaling factor dependent on
the dimensionality of the functions involved. This greatly simplifies some
arithmetic manipulations that must be used in later sections.

As before, let us assume that the object can be represented by a thin
complex transmission function. In other words, the presence of the object has
the effect of changing the phase and intensity (or, rather, modulus) of the wave
incident upon it. The exit wave, ψe(x, y), immediately behind the object, will
have the form

ψe(x, y) = a(x, y) · q(x, y), (3)

where x and y are coordinates lying in the plane of the (2D) object function,
a(x, y) is the complex illumination function falling on the object, and q(x, y)
is the complex transmission function of the object. As emphasized previously,
q(x, y) is not the potential or optical potential of the object; it is equal to
the exit wave that would emerge from a thin (but possibly very strongly
scattering) object when illuminated with a monochromatic plane wave. For
a thick specimen, we might hope that

q(x, y) = ei
∫

σV (x,y,z) dz, (4)

where V (x, y, z) is the optical potential (or, in the case of high electrons,
the atomic potential) of the object, and σ is a constant describing the
strength of the scattering for the particular radiation involved. In this case the
ptychographical image derived below can be related directly to the projection
of the potential (by taking the logarithm of q(x, y) – at least in the absence
of phase wrapping), despite strong (dynamical) scattering. In fact, this is not
the case for thick specimens because the integral with respect to z does not
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account for propagation effects as the wave traverses and diffracts through
the thickness of the object. This distinction is emphasized because it has led
to many misunderstandings in the literature. In particular, because q(x, y)
can introduce very large phase changes, including more than 2π , it is quite
wrong to suggest that the multiplicative approximation is a “weak phase” or
kinematical approximation; it is really a “thin object” approximation.

Assuming this approximation, we can write via the convolution theorem
that the amplitude in the far field, M(u, v, ), is given by

M(u, v) =
{
%q(x, y)

}
⊕

{
%a(x, y)

}
, (5)

where we note that in a real experiment u and v are must be scaled
appropriately by the wavelength and the camera length (the distance between
the object and the detector plane; see Section III.A). The convolution operator,
⊕, is defined for any two 2D functions, g(x, y) and h(x, y), as

g(x, y) ⊕ h(x, y) =
∫∫

g(X, Y )h(x − X, y − Y ) dX dY. (6)

Now let us relate this to our qualitative description of ptychography in the
previous section. In the case of electrons, the optical setup shown in Fig. 1
is achieved in the STEM configuration. In this case, a(x, y) is referred to as
the “probe” because the very intense beam crossover at the specimen plane
can be used to probe the specimen to obtain electron energy loss spectra and
other analytical signals from the small volume of matter illuminated. a(x, y)
is itself the back Fourier transform of the aperture function, which we call
A(u, v), lying in the back focal plane of the lens. It should be noted that u and
v are angular coordinates of the Fourier components that make up the incident
radiation. Because beams cross over in the vicinity of the object, a diaphragm
lying in the back focal plane appears reversed in the diffraction plane. A(u, v)
is therefore the complex amplitude of the illumination as it arrives in the
diffraction plane. A(u, v) can include phase components corresponding to
the presence of aberrations; its modulus is usually of the form of a “top
hat” function (although this is considerably modified when the illumination
is partially coherent). The diffracted amplitude is now:

M(u, v) = %
[
%−1A(u, v)

]
⊕ %q(x, y), (7a)

or

M(u, v) = A(u, v) ⊕ Q(u, v), (7b)

where Q(u, v) is the Fourier transform of the object transmission function.
It is this convolution (folding) in the diffraction plane that leads to the
term ptychography. Everything in this Chapter depends on the existence of
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this convolution. The STEM configuration is particularly straightforward to
understand when we assume a very simple form of A(u, v) – a sharply defined
circular aperture. In our simplest manifestation of ptychography, we make two
measurements, intensities I1(u, v) and I2(u, v), each from different positions
of the probe, where

I1(u, v) =
∣∣A(u, v) ⊕ Q(u, v)

∣∣2 (8a)

and

I2(u, v) =
∣∣[A(u, v)eiu&x

]
⊕ Q(u, v)

∣∣2 (8b)

and where we have assumed the second measurement is made with the
illumination function shifted with respect to the origin in real space by a
distance &x in the x-direction to give a(x − &x, y): The exponential derives
from the Fourier shift theorem, namely, that

%g(x + &x) =
∫

g(x + &x)ei2πux dx =
∫

g(X)ei2πu(X−&x) dX

= G(u)e−iu2π&x (9)

for any function g(x) whose Fourier transform is G(u). In the simplest version
of ptychography, we are interested in the case of q(x, y) being a periodic 2D
crystal. Q(u, v) then only has values on an equivalent 2D reciprocal lattice.
Let us suppose for simplicity that this lattice is rectilinear with a periodicity
of &u and &v, in the u and v directions, respectively. We can say that

Q(u, v) =
∑

n,m

Qn,mδ(u − n&u, v − m&v), (10)

where Qm,n is a complex number associated with the amplitude of a recipro-
cal lattice point indexed by m and n, the sum is over the positive and negative
integers for all m and n, and δ(u, v) is a Dirac delta function defined as

δ(u − u0, v − v0) =
{

0 for u '= u0 or v '= v0,

∞ for u = u0 and v = v0
(11a)

and where
∞∫

−∞
δ(u − u0, v − v0) du dv = 1. (11b)

To achieve the overlapping disks we described in the previous section
(Fig. 2(a)), the aperture function A(u, v) must have a diameter of at least
&v or &u, whichever is the larger. Suppose that &u > α > &u/2, where α is
radius of the aperture, as shown in Fig. 5. As before, we consider just two of
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FIGURE 5. In the simplest STEM implementation of crystalline ptychography, intensity is
measured at the centers of the zero-order and first-order diffraction disks and at the midpoint of their
overlap region.

the disks in the far field: the zero-order beam (n = m = 0) and one diffracted
beam (n = 1, m = 0), then

Q(u, v) = Q0,0δ(u, v) + Q1,0δ(u − &u) (12)

and so

M(u, v) = Q0,0A(u, v) + Q1,0A(u − &u, v). (13)

With reference to Fig. 5, let us measure the intensity at a point midway
between the centers of the two interfering aperture functions, namely, at u =
&u/2 and v = 0. The wave amplitude at this point is

M

(
&u

2
, 0

)
= Q0,0A

(
&u

2
, 0

)
+ Q1,0A

(
−&u

2
, 0

)
(14)

and hence the intensity at this point in the diffraction plane with the illumina-
tion field (the probe) on axis, is

I1

(
&u

2
, 0

)
=

∣∣∣∣Q0,0A

(
&u

2
, 0

)
+ Q1,0A

(
−&u

2
, 0

)∣∣∣∣
2

. (15)

We now move the probe a distance &x in the x-direction (parallel with
the reciprocal coordinate u). From Eq. (8b) we obtain a second intensity
measurement

I2

(
&u

2
, 0

)
=

∣∣∣∣Q0,0A

(
α

2
, 0

)
ei &2πu

2 &x + Q1,0A

(
−α

2
, 0

)
e−i &2πu

2 &x

∣∣∣∣
2

.

(16)
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The amplitudes of these two equations are identical in form to the qualitative
description derived in Section II.E [Eq. (1)], with the phase term γ replaced
by π&u&x and with Z1 and Z2 replaced by the underlying phases of
the lattice reflections Q0,0 and Q1,0. In the previous section we assumed
that the aperture function A(u, v) did not have any aberrations (i.e., phase
components) across it; this means the value of A(u, v) is unity, and so this
term does not appear in Eq. (1). In general, the aperture function will have
phase changes across it, corresponding to defocus, spherical aberration, and
so on, and so these must be accounted for in some way – indeed the probe
movement (which leads to a linear phase ramp multiplying the aperture
function, as in Eq. (8b) is itself a sort of aberration term.

It should be pointed out that in general it may not be experimentally
convenient to use an aperture function that is small enough to guarantee that
there exist points in the diffraction pattern where only two adjacent diffracted
disks overlap. Clearly, as the unit cell increases in size, the diffraction disks
become more and more closely spaced in the diffraction plane. In the limit
of a nonperiodic object, it may appear as if the ptychographical principle is
no longer applicable, because the pairs of interfering beams can no longer be
cleanly separated. In fact, we will see in Section IV that this is not the case,
provided we adopt more elaborate processing strategies.

In this very simplest arrangement with just two diffracted beams, we still
need to measure a total of four intensities to derive their relative phase. As
well as measurements made at the disk overlaps, we need the intensities of the
diffracted beams themselves (lying outside the region of overlap, but within a
single disk, as in Fig. 5). Our task is to solve for the phase difference between
Q0,0 and Q1,0 given that

|Q0,0|2 = I1(0, 0) = I2(0, 0),

|Q1,0|2 = I1(&u, 0) = I2(0, 0),
(17)

|Q0,0 + Q1,0|2 = I1

(
&u

2
, 0

)
,

∣∣Q0,0e
iγ + Q1,0e

−iγ
∣∣2 = I2

(
&u

2
, 0

)
.

Conventional crystallography is usually interested only in the structure of
the object, not its absolute position in terms of x and y. A displacement
ambiguity always occurs in the classic PDI phase problem: the intensity of the
Fraunhofer plane is unaffected by lateral displacements of the object. In other
words, normal diffraction is never sensitive to a linear-phase ramp applied
across the diffraction plane. The usual crystallographic convention assumes
that a point of symmetry is implicitly at the origin of real space. In contrast, in
ptychography there is an explicit definition of absolute position in real space –
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the known position of the confined illumination – but there is no reason to
suppose that the crystal itself just happens to be aligned centrosymmetrically
with this point in space. If the crystallographic phase of Q(u, v) (arising from
adopting a centrosymmetric convention for the phase of the diffracted beams)
is Q0(u, v), then

Q(u, v) = Q0(u, v)−i(u&x+v&y), (18)

where &x and &y is the displacement of the crystal relative to the optic axis.
As a result, the particular phases of Q0,0 and Q1,0 that are consistent with
Eq. (17) relate to exact geometry of the lens, which defines the exact position
of the illumination function a(x, y). In practice, the value of γ , proportional to
the probe movement distance, can be chosen at will. In almost all conceivable
experimental implementations of crystalline STEM (electron) ptychography,
the exact position of the probe relative to the object is not known accurately;
only relative displacements can be measured (say by applying an offset to the
probe scan coils in STEM). In this case, we could choose to scan the probe
position until I1(

&v
2 , 0) is at a maximum and simply assert the convention

that the probe at this position is at x = y = 0. Relative to this definition,
then Q0,0 and Q1,0 have zero phase difference between them (because in this
condition they add to give maximum modulus). However, the phase of all
other reflections will be altered accordingly via Eq. (18).

Equation (17) can be solved either geometrically (via the complex plane
construction in Fig. 2(b)) or by direct substitution. Ill-defined solutions can
still arise if we choose the value of γ unfavorably; for example, we find that
I1 = I2 if either &x = nπ/&u, where n is integer, or when γ /2 happens to be
the same as the phase difference between Q0,0 and Q1,0. We note, however,
that Eq. (17) only represents a tiny fraction of the number of measurements
at our disposal. Obviously, the intensity at the midpoints of all pairs of
reflections must be tracked to solve for all of the relative phases of all pairs
of adjacent beams. Many diffraction patterns, from many probe positions,
can also be recorded instead of just the two required to unlock the complex
conjugate ambiguity. Achieving this in the most computationally favorable
way has been the subject of much work and is discussed in Section IV.

F. Illumination of a “Top Hat” or Objects with Finite Support

The crystalline STEM implementation of ptychography is easy to understand
intuitively because the illumination function (probe) in real space is of a
particular form that conveniently provides a far-field diffraction pattern in
which the interferences of the various pairs of beams are tidily separated.
In general, the illumination function can be of any functional form. In the
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previous section, the exact shape of a(x, y) did not need to be known because
it was itself a Fourier transform of the a neat shape that subsequently was
convolved over the diffraction pattern.

In his original papers outlining the key ideas in ptychography, Hoppe
(1969a, 1969b) first described the STEM implementation and then went on
to consider the effect of sharply defined rectilinear illumination patches,
achieved by apertures of various dimensions mounted right up against the
specimen. He observed that the same broad concepts for solving the phase
problem applied in the Fourier domain. We note that this physical implemen-
tation is identical to the concept of a finite support that arises in much of the
theory of phase retrieval, although Hoppe’s thoughts on this matter seem to
exist in isolation, at least as far as the cited literature is concerned.

It is easiest to understand why a finite support leads to a ptychographical
solution of the phase problem by thinking of a 1D object function, q(x),
illuminated by a top-hat function a(x), of the forms shown in Fig. 6. Let us
first discuss this qualitatively. If q(x) is periodic, then its Fourier transform,
Q(u) consists of a series of spikes (crystalline reflections), the modulus and
phase of which determine the Fourier series components of the structure lying
within the unit cell. When the crystal is perfect and of infinite extent, then
there is no scattered amplitude lying between these discrete reflections. When
we isolate only a small region of the specimen by the function a(x), then
the diffracted amplitude M(u) is, via Eq. (7), the convolution of the Fourier
transform of a(x) with Q(u). Provided a(x) has small physical extent (so
that A(u) has a width that is a significant proportion of the reciprocal lattice
spacing), then the effect of the convolution will be to introduce substantial
amplitude lying at points between the conventional lattice reflections; it is here
that adjacent diffraction orders can interfere with one another, just as in the
STEM configuration. Once again, by moving the aperture function laterally
in the object plane, a phase ramp can be introduced across A(u), altering the
relative phase of the interfering crystalline reflections, and hence obtaining a
direct estimate of their phase. Unfortunately, A(u) is now of the form of a sinc
function (see Eq. (20) below) and has infinite extent, so that the tails of many
diffraction orders interfere with one another at points midway between the
diffraction orders (illustrated in Fig. 6). This is in stark contrast to the STEM
configuration where we can arrange for two and only two pairs of beams to
interfere at the reciprocal lattice midpoints.

This argument can be stated mathematically as

a(x) = 1 for x <
b

2
< −x (19)

and a(x) = 0 elsewhere. The Fourier transform of a(x) can be derived from
direct evaluation of the 1D from of Eq. (2a), yielding the definition of the sinc
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FIGURE 6. Illustrating ptychographical interference when the illumination function is of the
form of a top hat (or there exists, equivalently, a support function). We assume the multiplicative
approximation in real space (top), giving rise to an exit wave consisting of just two spikes of
amplitude. In reciprocal space, we form the convolution, adding together a row of sinc functions.
Rather than measuring points halfway between the reciprocal lattice points, the points where we infer
that the amplitude of adjacent reflected moduli are equal (bottom diagram) give the most accurate
ptychographic phase. In fact, this particular rather unrealistic example (a series of delta functions in
the real and reciprocal space of q(x)) raises an interesting paradox. We know that, as a function of
the position of the illumination, the resulting Young’s slit intensity has either zero or unity intensity
at the exact halfway point between the diffraction reflections (depending on the width of the top hat).
This is because of the way the small ringing effects in phase-altered sinc functions add. When the unit
cell has structure, and the top hat is the same size as the unit cell, we can infer the ptychographical
phases, but the ringing effects will still corrupt the estimate (unlike in the STEM configuration where
the interference terms are neatly separated).

function, such that

%a(x) = A(u) = b
sin πub

πub
= b sinc(πub). (20)

If the object of function is crystalline, it consists of a series of delta
functions convolved with the structure of the unit cell that can be written as

q(x) =
(∑

n

δ(x − n&x)

)
⊕ fc(x). (21)
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The amplitude in the far field is

M(u) = %
[
a(x) · q(x)

]
= A(x) ⊕ Q(u). (22)

Now the Fourier transform of a periodic array of delta functions of separation
&x is itself an array of delta functions of separation &u = 1/&x. Hence

Q(u) =
(∑

n

δ(u − n&u)

)
·
(
%fc(x)

)
. (23)

In analogy with Eq. (10), this can be written as

Q(u, v) =
∑

n

Qnδ(u − n&u), (24)

with the understanding that the Qn are the Fourier coefficients (or structure
factors) of the unit cell fc(x). Therefore

M(u) =
∑

n

Qnδ(u − n&u) ⊕ b sinc(πub). (25)

This convolution can be pictured as simply the addition of a series of sinc
functions, each centered on a diffraction pattern reflection and multiplied by
the modulus and phase of that reflection (Fig. 6); sinc(πub) passes through
zero whenever ub is a non-zero integer. So when b = 1/&u = &x, a sinc
function centered on a particular reflection passes through zero at all other
reflections. In other words, when the object plane aperture is the same width
as the unit cell, the intensity measured at points in the diffraction pattern
where the normal diffraction peaks would occur is unaffected by the presence
of the aperture (except for a constant scaling factor). But in addition to
these conventional diffraction data, the interference intensities between the
conventional diffraction orders can be measured. Hoppe (1969a) suggested
examining points illustrated at the bottom of Fig. 6 where, given the known
moduli of the adjacent diffraction orders, one could infer the point at which
the associated sinc functions would have equal moduli. The actual modulus
(square root of intensity) measured at this exact point would be indicative
of the phase difference between the two adjacent reflections, give or take
the usual complex conjugate ambiguity (see Fig. 4), which, as before, can
be resolved by shifting a(x) by less than the width of the unit cell. Unlike
with the STEM, we now have the problem that all other diffracted reflections
will also add amplitude to points lying between any pair of reflections. In
fact, these additions in the artificial example shown in Fig. 6 lead to a strange
paradox (see caption). Nevertheless, Hoppe and Strube (1969) demonstrated
in an optical experiment that in general the phase differences of adjacent
diffraction orders could indeed be measured with reasonable accuracy using
this method.
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This process of interfering adjacent diffracted reflections is another way
of thinking about where both the source of the phase information and the
ambiguous solutions arise in conventional PDI. If we assume the object is in
fact periodic (and in this discussion, one-dimensional), with a periodicity of
its entire width, then the aperture function (support) is also the size of the
unit cell. In reciprocal space, the crystalline lattice points must be convoluted
with sinc functions, each one of which has zero value at all reflections except
the one on which it is centered. This hypothetical aperture does not alter the
relative intensity of the diffracted orders, but it does mean the diffracted orders
interfere with one another at the “in-between” reciprocal lattice points. Hence,
we have the classic phase problem with the 2N complex conjugate ambiguity.

G. Two-Beam Ptychography

In referring back to the STEM implementation of ptychography, we note that
a large part of the illumination disk is irrelevant as far as the phase determina-
tion process is concerned. In fact, all that is need are two pinholes, separated
in the back focal plane of the lens by the exact distance between the lattice
points. This is equivalent to illuminating the object by two coherent plane
waves, inclined to one another by twice the Bragg angle (this method relates
very closely to the Bragg–Brentano data set, discussed in Section IV.B). At the
object, the waves interfere and give rise to a sinusoidal interference pattern of
the same periodicity as that of the unit cell. In the far field we now have the
coherent summation of two diffraction patterns, offset from one another by
one reciprocal lattice vector. The amplitude of each of the reflections in the
resulting pattern is what would have been obtained within the overlap region
of each pair of disks in the STEM configuration. Once again, the complex-
conjugate ambiguity can be resolved by introducing a shift in the illumination
pattern of radiation which, as before, can be effected by introducing a change
in phase in either or both the incident beams.

The article by Hegerl and Hoppe (1972) uses this condition to evaluate the
ptychographical phase differences between reflections in a model calculation.
In this manifestation of ptychography, the illumination function must be by
a beam splitter or diffraction grating (as in the work of Berndt and Doll,
1976, 1978, 1983) and is therefore much harder to implement experimentally
than the STEM configuration. However, it does have the distinct advantage
that a crystalline object function can be very large, consisting of many
thousands of unit cells, all of which are bathed in the illuminating beam. This
is because there is no confined probe: the two incident plane waves extend
over the entire object. In the far field, all the relevant intensity is channeled
into exactly (and only) those points that give rise to the ptychographical
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interference. In consequence, counting statistics are much more favorable
and difficulties related to specimen damage due to a highly focused beam
are reduced. On the hand, the angular separation of the two incident beams
must be very accurately controlled so that the resulting illumination function
has a periodicity that exactly matches that of the unit cell over moderately
large distances (all the many unit cells which are illuminated). Two-beam
ptychography may still find application in the future in protein crystallography
where unit cells are large and low doses are required, as discussed by Hoppe
(1982) in his retirement review. Section IV.B. discusses the Bragg–Brentano
subset, which is a variant of the two-beam method, but where a range of
angular separations in the incident beam are processed simultaneously.

H. Commentary on Nyquist Sampling

Some authors, primarily those with a background in X-ray crystallography,
have introduced the term oversampling to describe the PDI method (Miao et
al., 1999, and the papers that cite this work). Note that here we are discussing
a sampling periodicity in the diffraction plane, which is itself in the spatial
frequency domain. The topic of discussion is the necessary pixel size in the
Frauhofer diffraction plane, where that size is expressed as an angle subtended
from the object (see Section III.B). In terms of the previous nomenclature,
we are interested in the necessary sampling in the u coordinate to capture
all the available information expressed in the experiment. We have seen that
ptychography relies on sampling between the conventional diffraction orders,
and so a discussion of how this “in-between the lattice point” sampling relates
to that required for the PDI problem is of some interest in the present context.

Referring again to Fig. 6, consider an array of delta functions in real space,
representing a set of periodic slits with separation &x. Note that we have
chosen to have the array shifted by &x/2 relative to the origin; this is done so
that every part of the amplitude of the diffraction pattern will be real (no imag-
inary components) in order to facilitate the graphical representation of what
follows. Now let us introduce our illumination function a(x), also centered on
the origin of real space. If this aperture is narrow enough only to cover two
slits in the periodic structure, then we have effectively set up a Young slits
experiment. In the far field the amplitude of the scattered waves is of the form

M(u) = e−i2π &x
2 u + ei2π &x

2 u = 2 cos(π&xu), (26)

as shown in Fig. 7. Our task from the point of view of a crystallographer
attempting to determine the structure of the underlying crystal (that is,
before the introduction of the aperture) is to find the modulus and phase of
the Bragg peaks, labeled with crosses in Fig. 7. These occur at a spacing
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FIGURE 7. Sampling in reciprocal space. Crystallography samples at the diffracted beams lying
at a spacing of 1/&u (crosses in top diagram). In this case, the crystal is a centrosymmetric array of
delta functions (as in Fig. 6). When isolated by an aperture, illumination function or support aperture
(see also Fig. 6), the diffracted amplitude is a Young slits pattern. When recorded in intensity (lower
diagram), sampling at 1/&u (circles) gives radical aliasing, from which we would erroneously infer
the function represented by the horizontal dotted line.

in reciprocal space of &u = 1/&x. In the case of the Young slits, that
means we need to establish that the undiffracted beam has an amplitude of
2 (because 2 cos(0) = 2), and that at the first diffraction order (u = &u, so
that M(u) = 2 cos π = −2) there is an amplitude of −2. In crystallographic
terms we would say that the moduli of these orders are both 2, but their
phases are 0 and π , respectively. Once we have discovered the phases, we have
solved the structure of the unit cell. Of course, if the unit cell has elaborate
structure, the phases of the various reflections could be very complicated. In
the present context (infinitely narrow slits), then successive reflections simply
have phases of either 0 or π .

However, we cannot measure amplitude, we can only measure intensity. We
see that

∣∣M(u)
∣∣2 = 4 cos2

(
&xu

2

)
= 4

(
1 − cos(&xu)

)
. (27)
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In other words, the periodicity of the diffracted intensity is now exactly
the same as the periodicity of the reciprocal lattice, as shown in the lower
half of Fig. 7. This is as would be expected. After all, if we were to slowly
increase the width of the aperture, and hence let more and more pairs of real
space delta functions contribute to the scattered amplitude, then the intensity
would concentrate itself only at the reciprocal lattice points. However, from
a signal-processing point of view, sampling intensity only at the reciprocal
lattice points undersamples the data by a factor of 2. In the simplest case of the
Young’s slits, if we only sample at the peaks of the intensity (shown as circles
in Fig. 7), then from a computerized representation of the data we would
conclude that the diffraction pattern has a numerical value of intensity of 4 at
all points in the diffraction plane. In contrast, the Nyquist condition requires
a function to be sampled at twice the frequency of the highest frequency
component contributing to that function. In the case of intensity (as opposed
to amplitude) the Nyquist sampling is &u/2, not &u.

This point is belabored here because I believe that the use of terms
double sampling or oversampling in reference to diffracted intensity is a
serious misnomer. The appropriate Nyquist sampling of the intensity of any
diffraction pattern is incontrovertibly &u/2. Of course, crystallographers
only ever need to concern themselves the measurable intensity at the actual
reciprocal lattice points. But from an information point of view, ignoring the
gaps between diffraction orders introduces a massive quantity of a priori
information: that for a perfect crystal all pixels lying between diffraction
orders have zero intensity. Sayre’s short paper in 1952 (Sayre, 1952) un-
derlined this point, yet many workers in the field of PDI still refer to the
need for oversampling (in the Nyquist sense) the diffraction intensity – a use
that has sadly become widespread. Sampling intensity at half the reciprocal
lattice periodicity exactly satisfies the Nyquist condition. On the contrary,
conventional crystallography undersamples the diffracted intensity by a factor
of 2: it can legitimately do this by assuming a priori that, for an infinite crystal,
there is no intensity lying between the diffraction spots.

All noncrystallographic discussions of the phase problem infer this fact
from the point of view of the width of the autocorrelation function or via
simple consideration of the frequency-doubling effect of intensity relative
to amplitude. It would seem, however, that Hoppe was the first author to
explicitly state a direct method for the solution for the missing N phases
from N diffraction orders via the 2N numbers associated with the Nyquist
frequency of intensity. In fact, he suggested that the ideal point to sample
the intensity between the diffracted orders was at those points where the
two adjacent sinc functions (arising from the ptychographical convolution)
have identical modulus, as inferred from the form of the sinc functions when
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scaled by the square root of the diffracted intensities of the crystallographic
reflections (see Fig. 6).

I. Concluding Remarks on Classical Ptychography

We have seen that crystalline ptychography is a two-step process as described
below:

1. A small region of the object is illuminated by a confined wave field, thus
leading to the conventional crystallographic lattice points being convolved
with the Fourier transform of the illumination function. As a result of this
process, the amplitudes of adjacent lattice points are given the opportunity
to interfere with one another. This means that if we now measure the
diffracted intensity lying between the conventional diffraction spots, we
can obtain an estimate of the phase difference between these amplitudes to
within an uncertainty of the complex conjugate of one of these beams.

2. By shifting the illumination function (or an aperture placed in the object
plane), the complex conjugate ambiguity can be resolved. This is because
the act of shifting the illumination function leads to introduction of a phase
ramp across the convolving function in reciprocal space. At points between
the conventional diffraction spots, the net effect is to advance the phase of
one of the interfering wave components and retard the other, thus leading to
a new measurement that can determine which of the two possible solutions
obtained in step 1 is correct.

In theory, the form of the illumination function can be engineered to facilitate
the most efficacious measurements. If the illuminating function is of the form
of an Airy disk (the Fourier transform of a circular top hat), then the con-
volution function is itself a circular top hat. This is very convenient because
it means that by choosing an appropriate radius of the top-hat function, we
can arrange for all the pairs of interferences to occur in well-defined regions
of the diffraction plane, while at the same time allowing measurement of the
intensity of each underlying beam, a configuration that naturally occurs in
the STEM configuration (Fig. 1). For crystals with reciprocal lattice vectors
that are not orthogonal and/or have magnitudes that are very different from
one another, then the probe-forming aperture can be shaped appropriately to
achieve this separation, as in the work of Hegerl and Hoppe (1970) and as
discussed by Hoppe (1982).

These broad principles still apply if the illumination function is instead
sharply defined in the object space, say via a rectangular aperture illuminated
by a plane wave placed right against the object function. Most propitiously,
if the aperture has the lateral dimensions of the unit cell, then the intensity of
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the conventional diffraction orders are not altered at all. However, at points
between the diffraction spots, amplitudes from more than two diffraction
orders interfere with one another, because the Fourier transform of real-space
aperture is of the form of a sinc function, which is extensive.

If we illuminate (an infinite) crystalline object with two coherent beams
that are separated in reciprocal space by twice the Bragg angle, then what
is measured in the diffraction plane is the coherent superposition of two
diffraction patterns, one of which is displaced with respect to the other by
one reciprocal lattice spacing. Each diffracted spot in this hybrid pattern
now expresses the interference intensity of all pairs of diffracted beams
separated by this reciprocal lattice displacement. This is essentially the
same information as expressed in the STEM configuration, except that the
illumination function consists not of a disk but of just the two points that
interfere in the far field. Once again the complex conjugate ambiguity can
be resolved by introducing a known phase shift into one of the coherent
illumination beams. This phase change, of course, has the effect of shifting
the (sinusoidal) pattern of illumination at the object plane in a way identical
with all other flavors of ptychography. We will call an important variant on
this data set the Bragg–Brentano subset (Section IV.B).

We note furthermore that Hoppe (1969a, 1969b) and Hoppe and Strube
(1969) attempted to extend their first formulation of ptychography to non-
crystalline objects but observed that the very simple interference phenomena
that occur in crystalline ptychography no longer apply, and so an explicit
solution algorithm for all the relevant phases did not at that time appear
to be available. Even in his much later discussion of these matters, Hoppe
(1982) seemed to conclude that the aperiodic ptychographic problem was
intractable.

I refer to the above manifestations of ptychography as classical pty-
chography – the main characteristic being that we make use of intensity
measurements occurring between the main diffracted peaks, and that these are
measured at more than position of a confined illumination field incident upon
the object. These classical manifestations can be mixed, refined, and extended.
(I have concentrated on very confined subsets of the available data in order
to reduce complexity of the description so far.) For example, Section II.E
considered measuring intensity only at four points in the diffraction plane
for two illumination beam positions. In fact, there is nothing to prevent
measuring every single pixel in the diffraction plane for every single possible
illumination function position in real space.
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III. COORDINATES, NOMENCLATURE, AND SCATTERING
APPROXIMATIONS

This section establishes the basic geometry of the ptychographical data set for
both small and large angle scattering and for 2D and 3D object functions. We
also briefly explore the breakdown of various scattering approximations. This
background is useful in discussions of the various experimental configurations
of some principal variants of ptychography and how their associated methods
of calculating the ptychographical image may or may not yield a useful
representation of object function.

A. Geometry of the Two-Dimensional, Small-Angle Approximation

We begin with the very simplest statement of Fourier optics, which can found
in any optics textbook; our purpose here is primarily to set up a coordinate
system for later sections.

To be consistent with Eq. (2), we use

ψP (r, t) = ei2π(νt−k·r) (28)

as our definition of a traveling plane wave in free space of unity amplitude;
where r is a 3D vector defining a point in free space, which can alternatively
be expressed in Cartesian coordinates x, y, and z; t is time, and ν is the fre-
quency of oscillation of the wave disturbance; and k is a 3D reciprocal vector,
which can alternatively be expressed in reciprocal Cartesian coordinates u, v,
and w; k points in the direction of travel of the wave, perpendicular to the
planes of constant phase in ψP (r), and is of length

|k| = 1
λ
, (29)

where λ is the wavelength of the wave disturbance. Note that different
traditions of nomenclature do not include the factor of 2π and/or use a +
or − sign in the exponential term of the plane wave. This is not fundamental,
merely conventional, but it does affect the sign and scaling of all reciprocal
space quantities. We assume our source of radiation is monochromatic, so that
we can ignore time evolution of the intensity of the wave disturbance.

Consider the experiment shown in Fig. 8 where the scattering angles are
all small (a couple of degrees, as is common in electron microscopy), and
the plane of the detector is described by coordinates (x′, y′), parallel to
(x, y) in the object plane. The z-axis lies along the optic axis perpendicular
to these planes. Let the illumination function be just 2D and described by
the stationary time-independent complex function a(x, y). Let the object be

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 33
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



120 RODENBURG

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

FIGURE 8. Definitions of coordinates. Illuminating radiation is incident from the left and can
be shifted to a position R in the x–y plane. The distance between the object and detector plane is L.
In this diagram, the size of the illumination relative to L has been grossly exaggerated.

described by a 2D transmission function q(x, y), where

q(x, y) = qM(x, y)eiφ(x,y), (30)

with qM(x, y) being a real number modulus between 0 and 1 representing the
absorption of the object (0 being total absorption, 1 being total transparency),
and φ(x, y) being a real number representing the phase change measured in
radians induced into the incident wave as it passes through the transmission
function. The exit wave immediately downstream of the object is then simply

ψe(x, y) = q(x, y) · a(x, y), (31)

which we will call the multiplicative approximation. In fact, in any real
experiment, the object must have finite thickness, so this approximation is
never formally satisfied.

Let the detector be a distance L downstream of the specimen plane (at
z = L). The distance D between a point (x, y) in the object plane and a
detector pixel at (x′, y′) is given by

D =
√

L2 + (x − x′)2 + (y − y′)2 = L

(
1 + (x′ − x)2 + (y′ − y)2

L2

) 1
2

.

(32)
According to the usual approximations of the small-angle limit, we expand the
square root to second order. If the total width, d , of ψ(x, y) is small relative
to L and to the dimensions of the detector (certainly always true with X-
rays and electrons), we can further approximate that x2 and y2 are negligible
relative to x · x′ and y · y′, so that

D ≈ L + (x′)2

2L2 + (y′)2

2L2 − x · x′

L
− y · y′

L
+ · · · . (33)
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By Huygens’ principle the propagation of the exit wave ψe(x, y) to the
plane of the detector through free space can be calculated by adding spherical
waves, each one emanating from an elemental area dx dy in the x–y plane and
propagating to the x′–y′ plane. The amplitudes of such waves decay as 1/D
and they have a phase of 2πD/λ. The total amplitude of the wave reaching
the detector at a point (x′, y′), which we will call M(x′, y′), is simply a sum
of such waves, so that

M(x′, y′) ≈ µ

L
e
−i 2π

λ

(
L+ (x′)2

2L2 + (y′)2
2L2

) ∫∫
ψe(x, y)e

i2π
λ

( x·x′
L + y·y′

L

)
dx dy,

(34)
where µ is a constant. (Note that we do not account for obliquity factors in
this discussion.) In fact, we cannot measure M(x′, y′); we can only measure
the intensity of the wave disturbance at the detector, namely

I (x′, y′) = M(x′, y′) · M∗(x′, y′). (35)

Although this equation presents us with all the difficulties of the phase
problem, it does at least have the advantage of obliterating the messy phase
terms that precede the integral in Eq. (34).

The first factor (1/L) in Eq. (34) is an approximation of 1/D: true when L
is large and the range of x′ and y′ is relatively small. The second factor is just
the absolute phase of the wave as it would arrive at the center of the detector.
The third factor accounts for the extra phase that is introduced at points off-
axis in the detector plane, because the spherical wave must propagate further
to reach these points; the spherical surface is here approximated by a parabola.
On forming intensity we obtain

I (x′, y′) ≈ µ2

L2

∣∣∣∣

∫∫
ψ(x, y)ei 2π

λ

( x·x′
L + y·y′

L

)
dx dy

∣∣∣∣
2

. (36)

The constant µ absorbs a number of theoretical factors, including a phase
term to account properly for the Huygens’ wavelet construction (see, for
example, Born and Wolf, 1999). However, in any experiment these are of
little concern relative to uncertainties in the efficiency of the detector and
the absolute intensity of the illumination function |a(r)|2. In practice, all
ptychographical methods will give an output of arbitrary modulus because
of these unknowns. We will call the output a ptychograph and label it Πsub,
where the subscript denotes the particular variant of the data processing
algorithm we use (Section IV). Any structural information of interest is
encoded in the relative magnitude and phase of Πsub over the field of view.
The absolute magnitude of Πsub is of little interest and its phase is unaffected
by the absolute of intensity. This is directly analogous to a conventional
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microscope where the user has very little interest in the precise calibration of
the brightness of the illumination, as long as it is sufficient to see the structures
of interest. Henceforth we will therefore ignore the constant terms µ/L.

For the purposes of our theory, we can further remove the physical effects
of the scaling of the diffraction pattern by the camera length L and the
wavelength by changing the coordinates of the measurement plane to u ≈
x′/λL and v ≈ y′/λL, and thus write

M(u, v) =
∫∫

ψ(x, y)ei2π(x·u+y·v) dx dy (37)

or, more compactly,

M(u) =
∫

ψ(r)ei2πu·r dr = %ψ(r), (38)

where u is a 2D detector coordinate vector u = uû + vv̂, with û and v̂ as unit
vectors in reciprocal space; and r is a 2D vector in real space, r = xx̂ + yŷ.

We can move our illumination function to a position defined by a 2D
vector R, so that

ψ(r) = a(r − R) · q(r). (39)

The complete ptychographical data set for 2D functions a and q is then
defined as the 4D intensity distribution

I (u,R) =
∣∣M(u,R)

∣∣2 =
∣∣%

(
a(r − R) · q(r)

)∣∣2
, (40)

which can be written as the ptychographical convolution

I (u,R) =
∣∣(A(u)ei2πR·u) ⊕ Q(u)

∣∣2
, (41)

where A(u) = %a(r) and Q(u) = %a(r). We will call this the fundamental
ptychographic equation.

These equations are the basis of all the theory of both the “direct” de-
convolution methods developed by the Cambridge group in the 1990s (see
Sections IV.A, IV.B, and IV.D) and the iterative solutions to the ptychograph-
ical data set (see Section IV.C). The nomenclature of the Cambridge work
was borrowed from the image processing literature: R was named ρ,u was
named r ′, and the reciprocal of ρ was named ρ′, which we will call r . The
biggest potential source of confusion is that what we will call U (the back
Fourier transform coordinate of u) was formerly named r . The rationale of
this altered nomenclature is to unify it with the reciprocal u–v coordinates
widely used by Cowley and others (e.g., Cowley, 1995). Furthermore, the
use of the dashed nomenclature for reciprocal coordinates becomes clumsy
in thinking of 3D scattering in terms of the existing TEM nomenclature
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(Section III.B). Note that the function a(r) was in some earlier articles (e.g.,
Rodenburg and Bates, 1992) called P(r) – equivalent to the “probe” function
in STEM.

Perhaps a rather misleading nomenclature in this former schema was to
call the object function ψ(r) (which we have called here the transmission
function q(r)). The author’s intention was to suggest that the function we were
aiming to solve for was the exit wave as it would appear under plane wave
illumination perpendicular to the (infinitesimally thin) object. However, this
led to some misunderstanding because many colleagues in the field of electron
scattering supposed that this was also meant to represent the exit wave as
it would appear (under plane wave illumination) from a thick object. Since
the exit wave in electron microscopy arising from thick, strongly scattering
objects bears no obvious relationship to the form of the scattering potential
in the object (especially given a range of incident vectors necessary to form a
localized probe), much of this work was dismissed as being based on a simply
wrong assumption, or that the method could only possibly work for thin,
weak, kinematically scattering objects. In fact, ptychography is remarkably
robust to dynamical scattering and thickness effects even in the case of
crystalline objects of small unit cell (Plamann and Rodenburg, 1998), for
reasons discussed briefly in Section IV.A.

B. Three-Dimensional Geometry

Another way of thinking of the integral in Eq. (36) is via Fig. 9(a). The
Fraunhofer approximation is equivalent to saying that only parallel beams
scattered from the object interfere with one another. It is easy to show that
this condition is met if

L * d2

λ
. (42)

If we say that in the absence of the transmission function the phase of the
Huygens’ wavelet emanating from x = y = z = 0 is zero, then the extra
phase introduced to a beam (or ray) emanating from a point (x, y) at z = 0
(that is, from within the 2D) is determined only by the two orthogonal angles
βx and βy . βx is the angle between the plane x = 0 and the plane containing
both the y axis and the line of the ray in question (as shown in Fig. 9(b)); βy is
defined similarly with respect to the plane y = 0. If we redefine

u = sin βx

λ
(43a)

and

v = sin βy

λ
, (43b)
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(a)

(b)

FIGURE 9. (a) Parallel beams scattered by the object will meet up and interfere in the
Fraunhofer diffraction plane. For this 1D object, the path length of the beam emanating from the
elemental length dx positioned at x is shorter than the beam scattered at the origin by an amount
x · sin βx , and consequently has an extra phase change 2πx · sin βx/λ, relative to the waves scattered
from x = 0. By substitution from Eq. (43a), the total resultant amplitude is hence the Fourier transform
F(u) =

∫
f (x)ei2πux dx, where f (x) is the exit wave immediately downstream of the object. For a

3D object, similar arguments lead to Eq. (45). (b) Definition of βx . The heavy arrow subtends from
the specimen to a detector pixel. βx is the angle between the plane x = 0 and the plane containing the
heavy arrow and the y-axis.

then, with reference to Fig. 9(a), the resulting integral of all such beams over
the exit wave is identical to Eq. (37). These rectilinear angular coordinates
have the advantage of being correct at all (large) angles where 3D scattering
effects dominate. We can think of the far-field scattered wave function as
existing over a spherical hemisphere (Fig. 10(a)), of diameter L (satisfying
Eq. (42)). We index the coordinates on this surface by the coordinates u and v.
In Fig. 10(b) we draw the view of this hemisphere looking back at it from a
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(a)

(b)

FIGURE 10. (a) Downstream of the object plane we can construct a spherical hemisphere. When
the Fraunhofer condition is satisfied, it is the phase and modulus of the spherical wave that impinges
on this surface that we aim to calculate to solve the scattering phase problem. This hemisphere is the
real-space equivalent of the Ewald sphere in reciprocal space. (b) Comparison of rectilinear (u, v) and
spherical coordinates (θ,φ), as seen from behind the hemisphere in part (a).

point a long way off on the z-axis. u and v project a square set of coordinates
over this hemisphere; this is in contrast to conventional spherical coordinates
(also illustrated schematically in Fig. 10(b)). Of course, any practical flat
detector must have a further mapping function to convert its pixel coordinates
into the angles βx and βy , and hence u and v. Other trigonometric factors
must account for the varying angle incidence upon the outermost detector
pixels. A further factor accounting for the 1/D decay of the spherical waves
can scale the intensity of the signals recorded at these high angles of scatter.
The important point is that when we think of solving the phase problem over
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the entire range of scattering angles available, then the phase we are trying to
solve manifests itself in the absolute phase of the spherical wave that impinges
upon this hemispherical surface, and that when our processing involves a
rectilinear detector and data manipulations involving fast Fourier transforms
of functions sampled on equally spaced arrays, then it is very convenient to
first map the detected intensities onto the coordinates u and v. We assume this
mapping in all that follows.

Once we begin to deal with high scattering angles, then implicitly the 2D
transmission object function also breaks down. Quite simply, if we look at
a 3D object from a number of different angles, then the features on the top
and bottom surfaces of the object appear to move with respect to one another.
In this section, vector quantities r and k will always be 3D (in contrast to
the previous section) and will sometimes be written in terms of coordinates
(x, y, z) and (u, v,w, ) respectively.

Let the object in three dimensions be a function V (r); its 3D Fourier
transform is

F(k) = c

∫
V (r)e2πk·r dr, (44)

where c is a constant. k is a 3D vector in reciprocal space that can be
decomposed into unit vectors k = uû + vv̂ + wŵ. (Note that the vector u
will be reserved for the 2D detector vector coordinate u = uû + vv̂.) In the
scalar theory of light optics, V (r) is called the optical potential. In electron
scattering theory, V (r) is the spatial distribution of the atomic potential in the
object, measured in volts. V (r) can be complex, the imaginary components
representing absorption of the radiation. The perfect imaging machine would
aim to estimate accurately, and at very high resolution, V (r).

V (r) must be estimated from knowledge of the distribution of the incident
radiation, which has k-vectors that will call ki , and the scattered radiation,
which has k-vectors we will call ks . If the object is strongly scattering or
thick, then the incident waves striking parts of it some distance from the
entrance surface will be substantially different from what would have arrived
at that region had the illumination function been allowed to propagate through
free space. Under these circumstances the inference of V (r) is in general
nontrivial, even if the modulus and phase of the scattered radiation can be
measured or calculated perfectly.

If the object scatters weakly (whether or not it is thick), then we can use
the first Born approximation (Mott and Massey, 1965). That is to say, the
intensity of the incident beam is not substantially attenuated as a result of
passing through the object and the total intensity scattered away from the
direction of the incident beam is relatively low. We will discuss this (so-called
kinematical) approximation in the next section, as well as its relationship to
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the weak phase grating approximation for a 2D object function. For a single
incident plane wave of k-vector ki , the amplitude of the wave scattered into
the far field in the direction of the k-vector ks , is given by

M0(ks) = δ(ki ) − ic

∫
V (r)ei2π(ks−ki )·r dr, (45)

where the real constant c arises from various factors that scale the strength of
the scattering to the voltage V (r). The dot product in the exponential follows
directly from considering the phase change induced from scattering at an
elemental volume positioned at r in 3D space relative to the wave scattered
from the volume at r = 0. The subscript on M0 is used to denote that in this
coordinate system the center of the Ewald sphere lies at the origin of k-space.
We also assume for simplicity that the incident wave has unity amplitude;
the unattenuated transmitted beam that appears in the kinematical theory is
represented by the delta function in Eq. (45). The scattered wave is −π/2 out
of phase with the transmitted beam, this indicating that by passing through
the potential well which is doing the scattering, the phase of the wave is
advanced slightly, and hence it acquires a small negative (given our definition
in Eq. (28)) imaginary component relative to the unscattered wave.

In addition to satisfying the Fraunhofer condition (Eq. (42)), we also require
that we satisfy the Nyquist sampling frequency (Section II.H) in the detector
plane. The minimum detector pixel size is therefore

&β ≈ λ

2d
, (46)

where &β is the notional pixel size over our hemispherical surface, indexed
as before by our orthogonal angular coordinates βx and βy . Here d is not just
the lateral width of the illuminated area of the object but is the approximate
linear dimension of the illuminated volume in a direction perpendicular to
the ray or beam corresponding to a particular angle (βx , βy). For example, in
STEM, the aspect ratio of a focused electron probe is large (it is thin but long
in the z direction), so actually the demands on the sampling condition even at
relatively small angles (2 to 3 degrees) become demanding (smaller detector
pixels are required at higher scattering angles). This is easily observed
experimentally; if the object is amorphous, we see rings of speckled intensity
becoming finer and finer as we move away from the optic axis (Rodenburg,
1988).

To satisfy this limitation on d , we must confine our illumination by having
a range of incident plane waves over a range of ki ; even if we use parallel
illumination combined with an aperture (or support function) mounted co-
incident with the specimen (as ptychography was originally envisaged by
Hoppe), then this function itself diffracts the illuminating wave and hence
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implies a corresponding range of incident vectors that form the ptychographic
convolution in the diffraction plane (Eq. (41)). We must therefore perform
a second integral over this range of ki . Let the modulus and phase of
the incident plane waves be given by complex-valued function A0(ki ), so
that

M0(ks) = A0(ki ) − ic

∫∫
A0(ki )V (r)e−i2π(ks−ki )·r dr dki . (47)

Substituting from Eq. (44), the second term is of the form of a convolu-
tion:

M0(ks) = A0(ki ) − ic

∫
A0(ki )F (ks − ki ) dki

= A0(ki ) − icA0(ki ) ⊕ F(ki ). (48a)

Note that ki and ks describe vectors lying in the same (reciprocal) space, and
so we could write this simply as

M0(k) = A0(k) − icA0(k) ⊕ F(k) (48b)

but we retain the subscripts in order to emphasize the relationship to the
conventional Ewald sphere construction.

Because we are dealing with monochromatic radiation

|ki | = |ks | = 1
λ
, (49)

which means the functions A0(ki ) and M0(ks) have zero value at all points in
reciprocal space except over the spherical surface of radius 1/λ. We define a
vector k0 (also of length 1/λ) that lies parallel with optic axis: that is, in the
direction of w axis in reciprocal space and in the direction of z axis in real
space.

Let the angle between k0 and ki (or ks) be described by the two orthogonal
angles βu and βv . βu is the angle between the plane u = 0 in reciprocal
space and the plane containing both the v axis and the vector ki (or ks); βv is
defined similarly with respect to the plane v = 0. These angles are identical
to the real-space angles βx and βy and map onto u and v as before:

u = sin βu

λ
and v = sin βv

λ
. (50)

We further define

ka = ki − k0, (51)

and

km = ks − k0. (52)
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FIGURE 11. The k-vector relationships relative to reciprocal coordinates u and w (this diagram
is in the plane v = 0), and the physical scattering angle βu = βx . The heavy circular line is the
conventional Ewald sphere (passing through the origin of k-space).

The latter relationships are illustrated in Fig. 11. Let

Aa(ka) = A0(k0 + ki ) (53)

and

Mm(km) = M0(k0 + km), (54)

which means the corresponding spherical surfaces of constant ki or ks pass
through the origin of k-space, as with the conventional Ewald sphere.

Like A0 and M0, we can think of Aa and Mm as 3D functions of a single set
of coordinates in k-space; as before, we do not write them both as a function of
just k because the form of these functions depend on our particular definition
of k0, and this in turn feeds into the scattering integral and the particular
solution we obtain in the ptychographical reconstruction. It should be noted
that if we think of ptychography as reconstructing the exit wave from the
object (we will see it does not actually do this when the object is thick), then
the plane of the reconstruction is perpendicular to k0. From an experimental
point of view, it is usual to choose k0 to represent the average direction of
the incident waves. A line (the optic axis) drawn between the object and the
detector in the direction of k0 will arrive at a pixel that we define as the center
of the u–v detector coordinate system.
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Now both Aa(ka) and Mm(km) only have a value over the Ewald sphere.
We define a function Ω(u, v,w) which of the form of a “spherical delta
function” in reciprocal space so that it satisfies (for any function G(k)),

∫
G(k)Ω(kw − k) dk =

{
G(k) for k = kw,

0 for k '= kw,
(55)

where, for given values of u and v, kw is constrained to the locus of points

kw = uû + vv̂ + 1
λ

((
1 − λ2(u2 + v2)) 1

2 − 1
)
ŵ. (56)

(The unit vector û should not be confused with the 2D detector vector u.)
We can describe fully the 3D functions Aa(ka) and Mm(km) by the 2D

complex functions A(u) and M(u), where

A(u) = A(u, v) = Ω(u, v,w) · Aa(ka) (57)

and

M(u) = M(u, v) = Ω(u, v,w) · Mm(km), (58)

where it must be remembered that u, v uniquely define w via Eq. (56). The
scattering Eqs. (48a) and (48b) now become

Mm(km) = Aa(ka) − ic

∫
Aa(ka)F (km − ka) dka (59)

or

M(u) = Ω(k) ·
[
Aa(k) − icAa(k) ⊕ F(k)

]
. (60)

In the object space we have a 3D illumination function a(r), which at z = 0
is simply the addition of the incident plane waves defined by the amplitudes
A(u), that is,

P(x, y, 0) =
∫∫

A(u, v)e−i2π(u·x+v·y) du dv = %−1A(u). (61)

If the illumination is physically created by a lens (as in the STEM geometry),
then the phase of A(u) will depend on its aberrations.

Let us suppose that the lens is perfect. In the absence of a specimen, we
simply have the transmitted beam in the detector plane, so that I (u) = M(u) ·
M∗(u) = A(u)A∗(u) and so it is somewhat meaningless to worry about the
exact z (or x, y) displacement of a(r). However, as soon as we introduce a
specimen, its position in the z-direction will strongly affect M(u). How is this
reflected in Eq. (60)? For kinematical scattering, in real space have a(r) plus
a term −ic · a(r) · V (r), the latter being a source of waves scattered by the
potential, π/2 out of phase with the illuminating function.
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Let us consider a single scattering center positioned at x = y = z = 0. If
we shift the illuminating beam by a distance of z0 along the optic axis, then
we would expect to see a propagated illumination function P(x, y, y − z0)
incident upon this scattering center. By the Fourier shift theorem, our 3D
function representing the probe in reciprocal space now has a phase change
introduced into it of eiφ , where φ = 2πz0w. This means that when we form
A(u) via Eq. (60), the dependence of w on u and v will introduce a phase
change in A(u) equal to

φ = z0
2π

λ

((
1 − λ2(u2 + v2)) 1

2 − 1
)
, (62)

which, for small values of u and v, approximates to the familiar defocus term

φ ≈ z0λπ
(
u2 + v2). (63)

In other words, the phase change induced in reciprocal space as a result of
a z-direction displacement of the specimen or probe function is equivalent
to a defocus term when this shift is expressed in reciprocal space over the
curvature of the Ewald sphere.

To clarify this scattering geometry in terms of the conventional Ewald
sphere construction, we refer to Fig. 12. Once we have defined k0, then the

FIGURE 12. For a particular incident plane wave (e.g., ki as shown) and scattering vector, ks ,
the amplitude of scattered wave is given by the value of F(k) at the center of the small, gray circle. In
fact, there is a range of incident vectors; hence the amplitude at any one scattering direction ks is the
integral over the surface S in F(k).
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scattering amplitude in the ks direction is just the integral over the curved
surface labeled S. The Ewald sphere is conventionally drawn with the end of
the incident k-vector ki hinged at the origin. It would probably be more logical
to draw this vector pointing in the opposite sense (−ks), with the vector −ka

being defined as above (as in Fig. 12). The curvature of S is then obviously in
the opposite sense to that of the Ewald sphere, because the scattering Eq. (47)
dictates the form k = ks − ki = ks − (k0 + ka). We also observe that
the phase change discussed in relation to the shift along the optic axis of the
illumination function is equivalent to a shift of the specimen function (that
is, a phase change in F(k)) in the opposite direction, again because of the
opposite curvatures of Aa(−ka) and the Ewald sphere.

C. Dynamical Scattering

In the various data-processing methods and algorithms discussed in Sec-
tion IV, there is no restriction on the form of either of the complex quantities
q(r) or a(r) as they appear in the fundamental ptychographical Eq. (41). If
we assume the multiplicative approximation (Eq. (31), then all these various
computational manipulations will render q(r). The first test calculations on
various ptychographical inversion methods (for example Bates and Roden-
burg, 1989) often used rather unrealistic objects, for example isolated delta
functions. In other words, q(r) was modeled as being mostly opaque with
a low proportion of pixels designated with unity transmission. Again, this
followed from the image-processing tradition where it is well established that
if you cannot get a phase-retrieval algorithm working for a series of delta
functions, it is unlikely to work for more complicated, fully structured or
textured objects. This sort of extreme object does not bear any relationship
to the weak phase object approximation as commonly used in electron
microscopy. In this, we assume the object can be described by

q(r) = 1 − icϑ(r), (64)

where c is a constant and

c
∣∣ϑ(r)

∣∣ + 1. (65)

When we undertake a Fourier transform of a weak phase object q(r), we
obtain a diffraction pattern of the form of

Q(u) = %q(r) = δ(u) − icF (u). (66)

The delta function (which only has value at u = 0) represents the unscattered
beam. Now, in conventional electron imaging theory, this approximation has
two important consequences. First, according to the Born approximation, the
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second term F(u) can be related directly to the scattering potential V (r) in
real space. Indeed, F(u) is just the Fourier transform of V (r), a fact already
used in Section III.B (compare Eqs. (65) and (45)). The second use of this
approximation is that the existence of a strong unscattered beam is essential to
conventional electron imaging theory. We want the image to have contrast that
is proportional to atomic potential. In fact, even if the object introduces large
phase changes into the exit wave (in which case Eq. (65) no longer applies),
then we will still see nothing in the electron image if the lens is perfect and
the modulus of the object transmission grating is unity. To see contrast, we
must introduce a Zernike-type phase plate into the back focal plane of the
lens (achieved by a combination of defocus and spherical aberration) to make
the second term in the above equation be rotated in the complex plane by π/2.
In this way, information residing in the scattered waves F(u) is expressed on
the intensity of image. If the weak phase approximation breaks down, the
conventional bright-field contrast is no longer a linear function of the atomic
potential.

How does this scattering approximation affect ptychography? If the object
is a truly infinitesimally thin transmission grating, the multiplicative approxi-
mation holds true. Within the limitations of the particular inversion method
used, the ptychograph will be an accurate representation of the exit wave
we would have obtained from the object had it been illuminated by a plane
wave. In other words, for thin objects, ptychography puts no restrictions on the
scattering strength of the object. This statement is true of any exit wave phase-
retrieval method such as holography or through-focal series reconstruction.
The point is that ptychography does not need the specimen to be weak as part
of the image-generation process itself, as does the conventional bright-field
image. In this sense, all exit wave methods are superior to the conventional
image mechanism. If the object is thin (but possibly strong), we might hope
that the phase of the exit wave field is roughly proportional to the projection
of the atomic potential within this hypothetical object.

We can think of the equivalence of multiple scattering with the object being
a strong phase grating as follows. When the phase change is strong, then the
object is of the form

q(r) = eiφ(r), (67)

where φ(r) can be large, even wrapping around several in the complex plane.
We can regard the weak phase approximation as simply the first two terms in
the expansion of eiφ(r). Further terms are given by

q(r) = e−iφ(r) = 1 − iφ(r) − φ2(r)

2
+ i

ϕ3(r)

6
+ · · · (68)

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 47
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



134 RODENBURG

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

so that means that the Fourier transform is (using the convolution theorem)

Q(u) = δ(u) − iΦ(r) − 1
2
Φ(r) ⊕ Φ(r)

+ i

6
Φ(r) ⊕ Φ(r) ⊕ Φ(r) + · · · . (69)

The higher-order terms are the diffraction pattern convolved with itself; these
terms represent the multiple scattering. All the beams in the diffraction pattern
can act as a source of a new diffraction pattern centered on that beam.

Our problems therefore do not arise from dynamical scattering per se,
but from the 3D scattering (as in Section III.B) combined with dynamical
scattering. Think of this in terms of a multislice calculation. Suppose we
simply switch off the propagation term introduced between each elemental
weak phase grating. The result is just a product of all the weak phase changes
introduced by each layer of the object (Fig. 13). This is simply

ψe(r) = eiϕ1(r)eiϕ2(r)eiϕ3(r)eiϕ4(r)eiϕ5(r)eiϕ6(r) · · · , (70)

where the ϕj (r) is the weak phase change induced by j th slice. A wave
component of a high-energy electron traveling in one dimension in the z-
direction over a potential well will accumulate phase relative to a wave
component that does not pass over the same well. This is really the Wentzel–
Kramers–Brillouin (WKB) approximation in quantum mechanics, which
breaks down when there are sharp discontinuities in the potential or when the
well is deep. If our infinitesimally thin, strong object physically existed, this
approximation would indeed break down. The exact solution would require
matching the amplitude and the gradient of the amplitude of the wave function
at the entrance and exit surfaces, leading to backscattered waves, and we can
no longer approximate that the k-vector of the high-energy electron linearly
increases as function of the potential well depth.

It is important to emphasize that ptychography does not solve for the
exit wave when the object is thick; in other words, a ptychograph will
never provide the same modulus and phase as holography or through-focal
series reconstruction, because it explores a different (indeed, more extensive)
volume of reciprocal space. With reference to Fig. 14, a conventional image
integrates the complex function lying over a circular region of the Ewald
sphere, which is accommodated by the diaphragm of the imaging-forming
lens. This integral is only identical to the ptychographic reconstruction when
the object is so thin that all reciprocal features lying in the u–v plane are
stretched out in the w-direction so much so that the integral over S is identical
to the integral C over the Ewald sphere.

Once we allow propagation effects, understanding what is going to happen
to the ptychograph is difficult. The theory of this has not been fully developed,
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(a)

(b)

FIGURE 13. (a) Illustrating the phase progression of the unscattered and scattered wave
components of an electron as it passes over a 1D potential well (i.e., no lateral propagation in x

or y). When the electron is over the potential well, its kinetic energy is increased and its wavelength is
shortened. Phasors in the complex plane are shown adjusted so that the unscattered beam has zero
phase. In this highly exaggerated case, the scattered wave accumulates a phase change of 5π/2
relative to the unscattered beam (very strong scattering). (b) The weak phase approximation that
the expansion of eiφ is 1 − iφ (hashed pointer). With the propagation switched off, a multislice
calculation accumulates phase as it progresses through a potential well, each layer introducing a weak
phase perturbation. When allowed to propagate laterally through 3D space, there is no such simple
relationship.
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(a)

(b)

FIGURE 14. The integral over Ewald sphere, C, forms one image pixel in a conventional
microscope. The lens acts to integrate the scattered waves falling within the lens diaphragm
(lower diagram). Ptychography integrates over surface S (see Fig. 12). The various ptychographic
reconstructions effectively deconvolve the surface C to derive a single amplitude at point P , and
hence an estimate of S. Πlc (Section IV.A) relies on S embracing only one or two reflections at any
one position P . Πp (Section IV.B) separates pairs of beams by Fourier transforming with respect to the
probe position. Ππ (Section IV.C) performs a division in real space. ΠW (Section IV.D) deconvolves
C via the Fourier transform of its intensity, H .

although Plamann and Rodenburg (1998) have compared model ptycho-
graphical calculations with second-order dynamical scattering theory. These
show that even for strongly crystalline objects ptychography is in fact not
as sensitive to thickness and dynamical effects as we might at first suppose.
At 100 keV in silicon, the phase of the Πlc ptychograph (see Section IV.A)
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is a good representation of the real exit wave under plane wave illumination
(when that exit wave is back-propagated to the mid plane of the object) up to
a thickness of 10 nm (see Fig. 18). The Πp ptychograph (see Section IV.B)
is much more insensitive to thickness and multiple scattering. In similar
calculations using crystalline silicon, a good representation of the projected
potential is achieved up to a specimen thickness of 25 nm (the resulting
images shown in Fig. 26 are explained in more detail in Section IV.B).
This rather astonishing result (25 nm is certainly “thick” by the standards
of conventional electron imaging) arises from the fact that Πp uses only data
from a plane in reciprocal space where all excitation errors are zero; under
kinematical scattering, this yields a perfect projection of the atomic potential.

Whether a more comprehensive processing algorithm can be evolved to
account more fully for dynamical effects remains an unanswered question;
clearly the aim would be to recover the actual 3D potential, say via a
combination of ptychography and tomography. Even in the crystalline Πlc

ptychograph (see Section IV.A), where only a few diffraction reflections are
processed, there is wide choice of phase-closure paths, each of which will
yield a different estimate of Πlc when the object is thick and dynamically
scattering, as observed experimentally by Nellist and Rodenburg (1998). In
the case of the Wigner distribution deconvolution (WDDC) method (Sec-
tion IV.D), a phase difference is obtained for every pair of pixels in the diffrac-
tion plane, each of which has explored a slightly different range of incident
and scattered beams. There remains a great amount of possible research to de-
termine exactly how to process this fantastic quantity of data most effectively.

Finally, it is noteworthy that, at least in the context of ptychography, it is
not clear that the weak phase approximation is identical to the kinematical
approximation. The former is usually thought of as a constraint on the exit
wave in real space, the latter as a statement of scattering strength in reciprocal
space. Consider a Gabor hologram. The main requirement for this method to
work is that the object is “substantially” transparent so that the undiffracted
beam can act as a reference wave for the scattered beams (i.e., the kinematical
approximation holds). However, the object itself can be strong in the sense
that, at any particular point it can be much stronger than a weak phase object,
provided the regions over which it is strong are small compared with the areas
of transparency.

Even in the conventional image, say of amorphous materials, these defini-
tions are not orthogonal. An object can be thick and strong in the sense that
the exit wave field is considerably changed in phase relative to an unscattered
beam. However, because the average phase change of the exit wave over any
area of the object is roughly constant, then the transmitted beam encoding this
average (and possibly large) phase change acts itself like an unscattered beam.
Only perturbations in the object potential (as seen in projection) deviating
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from the average inner potential cause contrast. In this way, even quite thick
amorphous specimens can appear to satisfy the weak phase approximation.
Note that in order to obtain the crystalline projection ptychographs Πp shown
if Fig. 28, an average phase change was subtracted from the raw ptychograph
to account for this accumulated average phase change. Furthermore, in the
case of ptychography we might suppose that if the area of illumination
is large, then the kinematical approximation will still hold, even though
particular small features in the object are strong. This may account for the
reason that the projection images discussed in Section IV.B, which are of
objects consisting of totally opaque grid bars, though surrounded by large
areas of empty space, produce ptychographs that are a good representation of
the object.

IV. THE VARIANTS: DATA, DATA PROCESSING, AND
EXPERIMENTAL RESULTS

This section briefly describes the relationship between the main variants of
ptychography and presents some examples of experimental results in the
fields of visible light optical, hard X-ray, and high-energy electron radiation.
As far as I am aware, there have been no experimental demonstrations of
the “classical” forms of ptychography (as defined above) using subatomic
wavelengths (high-energy electrons or X-rays) and employing only the mini-
mal two diffraction patterns or illumination functions as originally envisaged
by Hoppe. However, there have been many demonstrations of methods that
use more than one diffraction pattern obtained from a localized area of an
object and which exploit both the convolution theorem in reciprocal space
and the Fourier shift theorem in order to reconstruct a ptychograph. Classical
ptychography is difficult to put into practice for several reasons. For example,
it would be hard to imagine constructing a real-space aperture of the exact
size of an atomic-scale unit cell and moving it a distance that is a fraction of
that unit cell size while recording diffraction patterns – one of the geometries
described by Hoppe in the original papers. Even in the STEM configuration,
knowing the exact displacement of the probe relative to a small unit cell is
exceedingly demanding. Successful implementations have therefore involved
much more extensive data in order obtain redundancy in the measurements
acquired.

The most complete 4D data set is I (u,R), where the sampling in both u and
R is “dense” is the sense that each probe movement is small and the detector
has many pixels in it, as in a typical charged-couple device (CCD) camera.
This involves, for example, Nu × Nv × NX × NY = NTOTAL data pixels
over u, v and R = (X, Y ). Classical ptychography involves two diffraction

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 52
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



PTYCHOGRAPHY AND RELATED DIFFRACTIVE IMAGING METHODS139

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

FIGURE 15. Equivalent ways of constructing the entire I (u, R) data set. In the STEM
configuration (top), we collect a diffraction pattern for every probe position R0. In the conventional
imaging configuration (bottom), we collect an image for every value of u0, the tilt in the plane wave
illumination. The principle of reciprocity means that the intensity recorded at u0 when the source is
in the image plane at R0 is the same as when a source of the same intensity is at u0 and we measure
instead the intensity at R0. In the absence of incoherence, inelastic scattering or finite detector pixel
size, the two (4D) data sets are identical.

patterns, the necessary minimum being 2(Nu ×Nv) measurements, where the
product Nu × Nv = 2Ng − 1, where Ng is the number of diffraction orders
that we wish to phase.

This entire data set can also be considered via the imaging capabilities of
our illumination function, according to Fig. 15, which is drawn in the STEM
configuration. Everything discussed so far involves moving the illumination
(probe) function, which is equivalent to moving the source of radiation so that
its image in the object plane moves laterally. For each such probe position we
collect a diffraction pattern in the far field. The usual imaging configuration
in STEM is to scan the probe rapidly to all such object-plane positions while
collecting scattered parts of the intensity in the far field. To form a STEM
bright-field image we place a small aperture on the optic axis and display
the intensity measured there synchronously with the position of the probe.
By reciprocity (time reversal of the traveling waves), this is equivalent to
illuminating the specimen from the position of the detector and recording the
image in the plane of the source of radiation. This latter plane is simply the

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 53
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



140 RODENBURG

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

conventional image data: it is a map of I (u0,R) for just one value of u over
all values of R. We then have Nu ×Nv = 1, so that NTOTAL = 1 ×NX ×NY .

It would be rather absurd to encompass all of conventional imaging
theory under the auspices of ptychography. However, it is true that there
is a continuous spectrum of subsections of the complete I (u,R), many of
which embrace classical imaging concepts. For example, I (u,R0) is the
far-field diffraction plane mapped over all u for a single probe position;
if a(r) represents a highly defocused lens-generated illumination function
and q(r) is substantially transparent or mostly empty, then these data are
a Gabor hologram (Gabor, 1948, 1949). Is Gabor holography a form of
ptychography? The answer has to be no; that is partly why we adopted the
definition in Section II.C, which stipulated that ptychography requires an
illumination or object shift to unlock the phase ambiguity. In this context, it
is interesting to note that Lin and Cowley (1986) pointed out that a lateral
shift in the illumination function in Gabor holography would resolve the
defocus ambiguity that occurs in that method, because the direction of shift
of the shadow-image hologram would be in opposite senses for the two
possible reconstructions. This can, obliquely, be thought of a ptychographical
resolution of the complex conjugate phase ambiguity. We will not ponder
any further exactly where to draw the boundary between ptychography and
conventional holography and imaging; instead, the methods and experimental
data presented in this section are arranged, approximately, by their decreasing
relevance to the classical definition of ptychography developed in Section II.

A. The Line Scan Subset

The first short-wavelength experimental proof-of-principle that came closest
to classical STEM ptychography was by Nellist et al. (1995). Rather than
processing just two diffraction patterns, the probe was scanned along the
length of a line, a diffraction pattern being collected at a number of positions
(about 64), each spaced evenly by a distance less than the size of the unit
cell. The dimension of the data cube recorded was therefore NTOTAL =
2(Ng − 1) × NX × 1. We will call this type of ptychograph Πlc, being
calculated from a line scan set of crystalline diffraction patterns. The sample
was the old favorite for TEM resolution tests – crystalline silicon orientated
onto the [110] zone axis. By taking a Fourier transform of data collected in
the diffraction pattern at the central points between diffraction orders as a
function of the probe position, it was possible to obtain the relative phase of
13 diffraction orders (i.e., Ng = 13). Putting the complex values so obtained
(the magnitudes measured from the non-overlapped areas of the diffracted
disks) a near-perfect image of the so-called dumbbells (separation 0.136 nm)
was obtained in both modulus and phase (shown in Fig. 16).
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FIGURE 16. Line scan ptychograhs Πlc reconstructed from 13 diffraction reflections from
crystalline silicon oriented on the [110] zone axis. The left image is the modulus and the right image
is the phase of the reconstruction. The data were obtained with incident beam energy of 100 keV in a
VG HB501 STEM with intrinsic lens resolution of 0.3–0.4 nm. The scale bar is 0.27 nm in length, the
separation of dumbbells being 0.136 nm, although they appear slightly more widely spaced for reasons
discussed by Nellist and Rodenburg (1994, 1998). This image clearly demonstrates the resolution
enhancement possible with ptychography, even when the coherence envelope of the probe-forming
lens is relatively small.

The purpose of the experiment was to demonstrate that ptychography is not
compromised by the overall coherence envelope of the microscope (arising
from a combination of lens and accelerating voltage instability). The model
HB501 microscope (Vacuum Generators, Hastings, UK) had a nominal point-
to-point resolution of approximately 0.42 nm. Its coherence envelope was
equivalent to a resolution of ∼0.34 nm. In other words, by achieving a
coherent resolution of 0.136 nm, all the conventional resolution limitations
of the microscope had been surpassed.

Since then, 300-keV and aberration-corrected STEMs have been routinely
able to achieve the same resolution via the incoherent annular dark field
(ADF) image, but it must be remembered that the incoherent image has
intrinsically higher resolution than the coherent image (the impulse response
function is much sharper because the incoherent probe is the square of the
amplitude of the coherent response function). Obtaining a complex image
in modulus and phase is also not particularly spectacular; similar data can
be obtained via a through-focal series reconstruction or holography (e.g.,
Coene et al., 1992; Lichte, 1986), the latter obtaining a representation of
the exit wave, ψe(R). However, both these competing techniques require a
very good lens and very good coherence. Note that the incoherent nature of
ADF imaging derives from the size of the detector, giving an image which,
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via reciprocity, can be thought of as a conventional image for which the
illumination is wide-angled and hence incoherent. The probe-forming optics
must still be coherent in the sense that the source must be small and bright,
the back focal plane of the lens must be illuminated coherently, and the
defocus lens instabilities must be negligible; in other words, all the usual
limitations of electron optics apply to the ADF image. On the contrary, the
silicon ptychography experiment demonstrated that partial coherence does not
present a fundamental resolution limit.

A visible light implementation of this same scanned probe version of pty-
chography was demonstrated by McCallum and Rodenburg (1993b). A laser
printer was used to print a periodic array of the Greek letter ψ (see Fig. 17).
This was then reduced in size onto a transparent negative by conventional
photography. The resulting negative image (the ψs were transparent) was
placed into an optical bench that emulated the STEM configuration. The
cube of data so formed (a diffraction pattern for every probe position) was
then Fourier transformed with respect to the probe coordinate, X. In the
resulting cube of data there is a plane – plotted as a function of u, v at
one particular Fourier component of the probe movement coordinate – which
exactly picks out all the relative ptychographic phase relationships (bottom
right, Fig. 17(a)). Why is this? Think of it as follows. As the probe is moved,
the intensity in the region of overlap between the adjacent circular diffraction
orders varies periodically as the vector shown as Z2 in Fig. 4 cycles around
in the complex plane. The intensity can be plotted at this particular point as
a function of the probe position, which gives a periodic sinusoid. The same
method was used to construct the electron ptychograph of silicon (Fig. 16).
Each of these sinusoids has the ptychographic phase difference between the
corresponding diffraction orders, and so in this method all such crystalline
phase differences are captured in a single picture.

Extracting these phases and putting together the resulting crystalline
Fourier components yields a high-resolution image of the object (shown in
Fig. 17(b)). All the high-angle beams rely on obtaining their phase from
beams that lie closer to the undiffracted beam; recall that in this configuration
we can only measure phase differences between adjacent beams. The process
of successively phasing higher-order beams is called stepping out. Errors
would be expected to accumulate as we step out to higher and higher-order
reflections (successively larger numbers of beams are used in Fig. 17(b)).
However, there are a correspondingly larger number of permutations of
stepping routes that can be taken as the number of reflections is increased,
and so it is possible to adopt strategies that minimize the accumulation of
error. The important result in the present case was to demonstrate that 81
reflections could be phased in this way, giving a good representation of the
object.
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(a)

FIGURE 17. (a) Visible light optical analog of crystalline line scan ptychography. Top left:
Conventional image of the object acquired using a lens of large numerical aperture. Top right:
Diffracted intensity using a probe-forming lens with a very small aperture. No diffraction peaks
interfere at the central point of the diffraction pattern, so a lens of this numerical aperture would not
be able to see any structure in the conventional image. Bottom left (modulus) and right (phase) of the
plane of the data cube Fourier transformed with respect to the probe position (see text). Only regions of
strong ptychographical interference are picked out in this plane. The right-hand image is a map of all
the relevant ptychographical phases (the grayscale being proportional to phase plotted from 0 to 2π ).
The phase of all the beams can be established by stepping out through each diffraction order using
the ptychographical phase differences between each pair of beams. (b) Ptychographic reconstruction
of Πlc for the data shown in (a). As more of the diffracted beams are factored into the image, the
resolution increases. The top left (modulus) of Πlc has used the nearest 5 × 5 diffracted reflections
seen in Fig. 16(a), while the top right image (modulus) has used 7×7 reflections. The two lower images
shown in modulus (left) and phase have used 9 × 9 reflections (a total of 81 ptychographic phases);
the phase is flat, as expected, except where the modulus is small and so phase is ill determined.
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(b)

FIGURE 17. (continued)

The work on silicon was extended in two later papers that contain some
interesting further results on the question of the effects of dynamical scattering
on Πlc (Plamann and Rodenburg, 1998) and on phase closure and other
experimental issues (Nellist and Rodenburg, 1998). Multislice calculations
were performed to compare the experimental images with theory and to
estimate the thickness of specimen at which Πlc ceases to relate meaningfully
to the underlying atomic potential. Images calculated assuming Eq. (4), that is,
assuming the 2D transmission function approximation Eq. (3), were compared
with the multislice calculation of the actual exit wave. In the 2D theory
we must assume the illumination is in some fixed plane perpendicular to
the z direction. Surprisingly, even in rather thin specimens, the illumination
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defocus does slightly affect the calculated image. With the small range of k-
vectors in the incident radiation we would expect changes in the probe as a
function of z to be small. The radius of the aperture used in these experiments
in the back focal plane of the lens was only a little larger than half the angle
of the diffraction pattern g-vectors. This means it was too small to form
conventional bright-field image fringes at the periodicity of the unit cell. Even
a high-resolution conventional image of silicon (where the scattering angles
processed by the lens are much larger) produces effectively a projection of the
object; defocusing the lens within the depth of the object produces negligible
change in the image. It must be remembered, however (Section III.B) that a
ptychograph integrates a rather larger volume of reciprocal space relative to
the conventional image (Fig. 14). The latter is derived as a result of the lens
integrating the amplitude over a central disk lying on the Ewald sphere.

In fact, the dynamical calculations showed that Πlc is remarkably similar to
the real (strongly scattered) exit wave function in silicon provided it is back-
propagated to a plane in the center of the object. Figure 18 shows the modulus
phase of the calculated exit wave, the modulus and phase of that same wave
back-propagated to the mid-plane of the object, and Πlc. Πlc is independent of
illumination propagation if the relative ptychographical phases are measured

FIGURE 18. Images a and b are the modulus and phase, respectively, of the exit wave calculated
for [110] silicon with incident energy of 100 keV and sample thickness of 7 nm. This wave is then
back-propagated by 3.5 nm to the plane in the middle of the object (images c and d). The Πlc

ptychograph (images e and f) accurately corresponds to this back-propagated wave.
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FIGURE 19. Interfering disks in the STEM electron diffraction pattern. The specimen is silicon
oriented onto the [110] zone axis. The fringes result from the parabolic defocus term over the aperture
function (this pattern was recorded with large defocus in the STEM probe). When recorded in intensity,
the defocus phases from adjacent beams contrive to form straight fringes. When the aperture is very
large, the fringes cross one another and hence build up the shadow image of the periodic object, albeit
dominated by coherent effects like in a Gabor hologram.

from exactly the midpoints of the diffracted disk overlaps (provided the
probe-forming optics are symmetric) as first discussed by Spence and Cowley
(1978). Figure 19 shows raw data of the diffracted disks from silicon interfer-
ing with one another when substantial defocus has been applied to the probe-
forming lens: an image that graphically illustrates ptychographic interference.
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Nellist and Rodenburg (1998) measured phase closure between the various
routes through these diffraction orders (Fig. 20). The very large phase-closure
errors induced by taking triangular routes arise primarily from astigmatism
present in the lens. A parallelogram route allows such asymmetries to cancel
one another and so leads to much smaller phase-closure error. However, even
in the absence of such errors, discrepancies would be expected to arise from
dynamical scattering. Plamann and Rodenburg (1998) calculated these for the
same scattering geometry (Fig. 21). It is noteworthy that for Πlc the phase-
closure errors are relatively small for thicknesses of silicon less than 10 nm
(at 100-keV incident energy) and that low-order reflections (corresponding to
low-resolution information) are reasonably accurate up to 30-nm thickness.
(The Bragg–Brentano data set, detailed in the next section, yields much more
reliable reconstructions.) In short, even in a fully dynamical model calculation
of a crystalline object where all the usual channeling and propagation effects
are strong, the 2D ptychographic approximation does not begin to break
down until quite substantial specimen thickness. Spence (1978) performed
some similar calculations years ago and reached a similar conclusion: that
the relative phase between diffracted beams at their midpoint of STEM disk
interference is relative insensitive to dynamical scattering effects. He also
pointed out that as a function of thickness, a phase jump occurs at a thickness
equal to half the extinction distance, in the same way as a contrast reversal
occurs in the bright-field image.

In conclusion, the results of this first experimental demonstration of elec-
tron ptychography and the associated dynamical calculations showed three
important things. First, although the Πlc ptychographic reconstruction does
not attempt to make any account for the breakdown of 3D geometric and
propagation effects, the resulting image is still a very good estimate of object
structure seen in projection. In fact, as will be seen in Section IV.B, it is
possible to measure a different subset of I (u,R) that explores rather more
of the 3D information extant in the entire 4D data set. Proper consideration
of this may well suggest ways of further accounting for dynamical effects
in order to calculate ptychographs that are even more representative of the
scattering potential. Second, perhaps the most significant result from this
proof-of-principle is that the constraints of finite coherence (and hence the
so-called information limit) that occur in lens imaging and are generally
acknowledged as the final resolution limit in electron microscopy (even when
undertaken by aberration-corrected lenses) can be overcome by several factors
using ptychography. Third, although this proof-of-principle was applied to a
periodic and very simple specimen, the same benefits in relation to partial
coherence and dynamical scattering apply to many of the noncrystalline
variants of ptychography. All of these factors bode rather well for the relative
imaging strengths of ptychography.
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(a)

(b)

(c)

(d)

FIGURE 20. Phase closure loops in the experimental silicon Πlc . Errors in the triangular routes
are large, mostly because of astigmatism in the probe-forming lens. Parallelogram routes use pairs
of symmetric interferences (relative to the astigmatism), and hence the phase error cancel. Even
perfect measurements will give phase errors around closure loops because of thickness and dynamical
scattering effects.
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FIGURE 21. Calculation of phase closure as a function of specimen thickness in Ångstroms
(specimen is silicon on [110] zone axis, accelerating voltage 100 keV) in the presence of dynamical
effects. Solid line: stepping route (000) → (11̄1) → (002) → (000). Dashed line: stepping route
(11̄1) → (002) → (11̄3) → (11̄1). Dotted line: stepping route (002) → (11̄3) → (004) → (002).

B. The Bragg–Brentano Subset: Projection Achromatic Imaging

The line scan data described previously can be extended to form a type of
ptychograph that we will term Πp and which has truly astonishing properties.
Πp can account for at least some of the 3D geometric effects discussed
in Section III.C. The method produces a near-perfect projection image of
the object (which need not be crystalline) at a resolution unlimited by the
information limit or any symmetric aberrations in the lens used to focus
the illumination function (Rodenburg et al., 1993; Plamann and Rodenburg,
1994). It is also immune to lens-current instability and chromatic spread in the
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beam. It is also relatively immune to dynamical scattering and yields a good
representation of the object function even for strong, thick crystals.

The experimental procedure is to scan a 2D array of closely separated real-
space illumination positions and then select a particular Fourier component
of the 2D scan at associated detector pixels in the diffraction pattern, each of
which corresponds to the Bragg–Brentano diffraction condition for that same
real-space (probe-position) periodicity. Some lengthy explanation is required,
but first note that as far as the amount of measured data that are required, this
method uses the entire 4D data set: NTOTAL = Nu ×Nv ×NX ×NY , where all
the sampling is dense. However, unlike the G- and H -sets that are discussed
below, we need not undertake entire Fourier transforms (with respect to the
illumination position) for every single detector pixel. Instead, we only need a
single Fourier component picked at each detector pixel.

Let the Fourier transform of the 4D intensity data set I (u,R) with respect
to the 2D R coordinate be

G(u,U) =
∫

I (u,R)ei2πR·U dR. (71)

The Bragg–Brentano data set then corresponds to a 2D plane in this 4D data
cube given by

B(U) = G

(
U

2
,U

)
. (72)

We can think of this as follows. To form B(U), data are collected in the
diffraction plane, each pixel having coordinates given by the 2D vector u. We
collect diffraction patterns for all the possible (densely sampled) illumination
(probe) positions R. Consider a pixel in the detector plane lying at u0. We
form a 2D image as a function of R by observing the intensity that arrives at
this pixel. This is just a conventional image we could call, say, f (R). We take
a Fourier transform of this to create a diffractogram, F(U). We then extract
from F(U) the (complex) value of the single pixel lying at U0 = 2u0 and
put this into the array B(U) at the point U0. We do this for all u = u0 and
U = 2u0 and thus construct the 2D reciprocal-space function B(U). The back
Fourier transform of B(U) is the ptychograph Πp(R).

The very special properties of B(U) depend on the specimen being reason-
ably weakly scattering. (I say “reasonably” because it is still very much an
open question exactly how robust this data set is to dynamical scattering.) In
the domain of the limited calculations that were performed by Plamann and
Rodenburg (1998), and the visible light proof-of-principle performed by the
same authors (Plamann and Rodenburg, 1994), it would appear as if Πp is
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indeed a very good estimate of the object, even in the presence of quite strong
scattering and for thick specimens.

Following the derivation in Rodenburg et al. (1993), we first assume the
object is a 2D transmission weak phase grating of the form

q(r) = 1 − icϑ(r), (73a)

where c is a constant and

c
∣∣ϑ(r)

∣∣ + 1, (73b)

then the Fourier transform (diffraction pattern) of q(r) is given by

Q(u) = %q(r) = δ(u) − icF (u) (74)

where

F(u) = %ϑ(u). (75)

Now according to the fundamental ptychographical Eq. (41)

I (u,R) =
∣∣(A(u)ei2πR·u) ⊕ Q(u)

∣∣2
, (76)

which can be expanded as

I (u,R)

=
∫∫

A(ua)Q(u − ua)A
∗(ub)Q

∗(u − ub)e
i2πR·(ua−ub) dua dub,

(77)
where ua and ua are dummy variables. Arithmetic manipulations of I (u,R)
are key in developing the theory of the entire ptychographical data set.
Therefore the required steps in this first example are spelled out in some detail.
We use the technique of collapsing integrals via the Dirac delta function; this
can easily be extended to all the results that are simply stated in later sections.
In order to form G(u,U), and hence B(U), we must substitute Eq. (77) into
Eq. (71) to derive

G(u,U)

=
∫∫∫

A(ua)Q(u − ua)A
∗(ub)Q

∗(u − ub)e
i2πR·(ua−ub+U)dua dub dR.

(78)

Note that the integral of ei2πx·u over infinite limits in u is zero unless x is
zero. When x is zero, the integral is infinite. Between finite limits – which
will always occur in a real experiment because the span of the probe position
R and detector range u is finite – the resulting integral as a function of x is
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of the form of sinc(x) in one dimension and has a value of unity. This means
that in the limit of large limits of integration, sinc(x) has the same properties
of the Dirac δ function (Eq. (11)). A and Q in the above have no dependence
on R, so we can integrate over it to obtain

G(u,U)

=
∫∫

A(ua)Q(u − ua)A
∗(ub)Q

∗(u − ub)δ(ua − ub + U) dua dub.

(79)
We can next choose to integrate over either ua or ub. The choice is not
essential (but it can reduce the need for subsequent variable substitution). By
the time coherence functions and 3D scattering considerations are introduced,
such integrals can be over many dimensions (e.g., up to 20 in Rodenburg and
Bates, 1992). Integrating here over ub, the delta function only has value at
ub = ua + U , so

G(u,U) =
∫

A(ua)Q(u − ua)A
∗(ua + U)Q∗(u − ua − U) dua. (80)

We then put

uc = u − ua (81)

and reorder to obtain

G(u,U) =
∫

Q(uc)Q
∗(uc − U)A∗(u − uc + U)A(u − uc) duc. (82)

From Eq. (74)

Q(uc)Q
∗(uc − U) =

(
δ(uc) − icF (uc)

)
·
(
δ(uc − U) − icF (uc − U)

)∗

(83)
so

G(u,U) =
∫

δ(uc)δ(uc − U)A(u − uc)A
∗(u − uc + U) duc

− ic

∫
δ(uc − U)F (uc)A(u − uc)A

∗(u − uc + U) duc

− ic

∫
δ(uc)F (uc − U)∗A(u − uc)A

∗(u − uc + U) duc + · · · .
(84)

The first integral only has a value when uc = 0 and uc = U . The second
integral only has value when uc = U ; the third integral only has value when
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uc = 0. We ignore the F 2 term because the object is weak, so now

G(u,U) = δ(U)
∣∣A(U)

∣∣2

− icF (U)A(u − U)A∗(u) − icF ∗(−U)A(u)A∗(u + U) + · · · .
(85)

Forming B(U) we find

B(U) = δ(U)
∣∣A(U)

∣∣2 − icF (U)A

(
−U

2

)
A∗

(
U

2

)

− icF (−U)A

(
U

2

)
A∗

(
3U

2

)
. (86a)

Now if the aperture function (the aberration function of the lens) is centrosym-
metric, then

A

(
−U

2

)
= A

(
U

2

)
, (86b)

and thus whatever the phase of the lens aberrations, the second term in
Eq. (??) will just be the intensity of the aperture function. If we further assume
that the back focal plane of the probe-forming lens is evenly illuminated with
an intensity of radiation |A|2, but has a diaphragm of radius of |U | = α, then
this second term will have intensity |A|2 provided |U | < 2α, otherwise being
zero. The third term will also have intensity |A|2, but only if |U | < 2α/3;
for |U | > 2α/3 the third term is zero. In other words, for the high spatial
frequency region 2α > |U | > 2α/3, we can write simply that

B(U) = |A|2
(
δ(U) − icF (U)

)
, (87)

and the back Fourier transform is defined as the ptychograph

Πp(r) ≈ |A|2
(
1 − icϑ(r)

)
= |A|2q(r), (88)

the subscript p designating that Πp(r) is a projection image of the object
(see below). Amazingly, the transmission function of the object has been
reconstructed, scaled by the intensity of the illumination. If fact, we have
made two approximations; we have ignored the second-order F 2 term and
the lower third of the frequency spectrum of the image. However, both of
these issues arise in conventional imaging, but the conventional image is
additionally subject to all the usual constraints of the form of the particular
transfer function, including its zeros, whereas Πp(r) has unity transfer at all
spatial frequencies as emphasized by Cowley (2001). Furthermore, its transfer
function is twice the width of the imaging aperture, and in theory this aperture
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can be as large as desired because aberrations and defocus instabilities do not
appear to express themselves in Πp(r).

That is half the good news. Before considering the (very) bad news, I first
explain perhaps an even more interesting property of Πp(r). It is called a
projection image because Πp(r) only reconstructs information from a set
of perfect Bragg reflections that explore a plane of reciprocal space (not the
curved surface of the Ewald sphere) (Fig. 22). By reciprocity, we illuminate an
object in a conventional TEM by radiation incident at a particular angle β0,
where u0 = sin β0/λ. If the object is reasonably weak, then the image will
have an intensity component arising from the interference of this unscattered
wave with waves scattered through the objective aperture. It is well known
(especially by electron microscopes salesmen) that the highest-resolution
interference fringes in any TEM are obtained by illuminating a crystal tilted
off the zone axis into a strongly excited two-beam condition with a g-
vector of, say, g. If the beam tilt is now put at −g/2, then the two beams
(transmitted and diffracted) will travel through the objective lens at equal
and opposite angles to the optic axis as shown in Fig. 22. The interference
fringes obtained in the image plane will have a spatial frequency of U = g.
However, as far as demonstrating the best-possible fringe resolution of a
microscope, this condition is very convenient because the two beams lie

FIGURE 22. The top image shows the STEM configuration; the bottom image shows the
equivalent TEM experiment via reciprocity (compare Fig. 15). The Bragg–Brentano data set interferes
an undiffracted beam (labeled UD) with a beam that set off from within the lens in the direction of
beam DIFF. The latter is diffracted through twice the Bragg angle and hence interferes with UD at the
detector pixel (marked with a black box). By reciprocity, this is the same as illuminating the object
with a beam tilted by θB from the optic axis. The diffracted beam now lies at an equal but opposite
point in the back focal plane. In the image plane, we have lattice fringes. Ππ takes a Fourier transform
of these fringes (i.e., a Fourier transform with respect to the probe position coordinate R), and hence
extracts only the information relating to these symmetric Bragg beams.
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on the same achromatic ring of the object lens. In other words, variations
in lens excitation or energy spread (chromatic spread) in the beam induce
identical phase changes in the two beams. The fringe resolution is therefore
only predicated on the effective source size in the illuminating beam, which
leads to a substantially better resolution (in the fringes) than can be obtained
when the illumination is parallel with the optic axis, in which case all the
image-forming beams are not on the same achromatic ring as the transmitted
beam. Now in the case of B(U), all such pairs of achromatic beams are
processed simultaneously. This is possible because in the STEM configuration
each detector pixel is equivalent (by reciprocity) to each possible illumination
beam angle in TEM. The sets of interference fringes that would be measured
in TEM are separated from one another by the Fourier transform of I (u,R)
we undertake with respect to R. (Remember that R is the TEM image pixel
coordinate.)

Now consider how these symmetric beams correspond to one another in
3D reciprocal space. As the angle of illumination (in the TEM view of this
experiment) is increased to u, we pick out the periodicity 2U in the image
plane; that is to say, the periodicity that arises from the interference of the
incident beam with the beam that is scattered to −u. Therefore for all values
of u we are in a symmetric Bragg scattering condition, with u = sin θB/λ.
This is exactly the same as in the X-ray Bragg–Brentano condition, except
there the goniometer of the specimen is rotated at half the angular speed of
the detector. With an X-ray diffractometer the principal advantage is that a
large specimen diffracts the same Bragg beam into the detector provided both
are equidistant from the object, thus optimizing counting statistics. In terms
of the description in Section III.C, the negative curvature of the 3D surface S
compensates for the curvature of the Ewald sphere, thus solving for a plane
in 3D diffraction space (Fig. 23). A plane in reciprocal space corresponds to
projection in real space. This is simply a restatement of the fact that Πp(r) is
independent of defocus.

The projection property of Πp(r) was demonstrated by Plamann and
Rodenburg (1994) using visible light optics. Two TEM copper grids were
mounted separated by a distance of 14 mm (Fig. 24). The two square grids
were rotated at an angle to each other and illuminated by a convergent beam of
laser light emulating a STEM probe. The lens diameter and working distance
were chosen such that the intrinsic resolution of a conventional image was
∼120 µm. This was just sufficient to resolve the grid bars (spacing 250 µm,
each of width 50 µm) but was large enough so that the illuminating probe
spread significantly through the depth of the entire object. In other words,
by adjusting the z-displacement of the object, either grid could be brought
noticeably into better focus than the other. Data were collected on a CCD
camera as a function of all specimen shifts, −R, equivalent to shifting the
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FIGURE 23. In the Bragg–Brentano data set, the incident beam is symmetrically tilted relative
to the optic axis with respect to the scattered beam. In this way, we solve for a plane in reciprocal
space, not the amplitude lying over the Ewald sphere as in the conventional image (compare Figs. 12
and 14).

FIGURE 24. Schematic of the specimen used to obtain the reconstructions in Fig. 25.
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FIGURE 25. Images a and c are the conventional visible light analog STEM images of the object
shown in Fig. 24. Image a is with the beam focused on the diagonally mounted grid, and image c is on
the squarely-mounted grid. Images b and d are their respective Πp ptychographs (all these images are
in modulus only). The Πp ptychographs produce a good representation of the projection of the object
at double resolution.

illumination through R. In the conventional bright-field images obtained with
the beam crossover focused on each grid, poor images are produced, each
showing the respective grids at different angles to one another (Fig. 25,
a and c). In the corresponding Πp(r) constructed from the same experimental
data (Fig. 25, b and d), but using all u and the respective Fourier components
of U , we obtain a double-resolution image of the two grids superimposed on
each another – a projection of the object. The reason the image has higher
resolution can be perceived as arising from the fact that an incident beam
lying at the edge of the aperture function is scattered through twice the angle
of the aperture radius to meet up with the beam that set off from the opposite

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 71
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



158 RODENBURG

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

side of the aperture. The conventional image interferes the on-axis beam with
beams lying up to only the radius of the aperture function, not its diameter.

Plamann and Rodenburg (1998) undertook some electron dynamical scat-
tering calculations for the same scattering geometry as the Bragg–Brentano
subset for the silicon [110] zone-axis dumbbell Πp (called reconstruction
method II in the cited paper). The results are shown in Fig. 26. The lower
image in each image pair is the phase of Πp, which approximately preserves
the overall structure of the silicon dumbbells up to a total specimen thickness
of almost 30 nm (these calculations were performed for 300-keV electrons).
In looking at the phase and amplitude of the Bragg beams of which Πp is
composed (Fig. 27), all the beams accumulate phase in an approximately
linear function of thickness. By multiplying Πp by an appropriate phase

FIGURE 26. Modulus (top rows) and phase (bottom rows) of Πp , simulated by multislice
calculations, for various specimen thicknesses of silicon (see text). Thickness ranges from 2.9 nm
(top left) to 28.8 nm (bottom right). The phase image is a reasonable estimate of the structure of the
dumbbells. A better representation can be obtained by subtracting the phase ramp (shown in Fig. 27)
and plotting the imaginary part of Πp (Fig. 28).
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offset, the imaginary part of the result is almost a perfect projection of the
potential up to a thickness of ∼20 nm (Fig. 28).

After enumerating the very beneficial properties of Πp, there is some
moderately “bad news.” So far the theory above has ignored the assumption
that pixels in u and R are infinitesimally small and that the positions and
angles spanned by R and u are infinite. If our Fourier transforms are not
undertaken over infinite limits, the convenience of the Dirac delta function no
longer applies. This is not intractable, but it must be accounted for by using
a softly varying filter function applied at the experimental limits of the data
(McCallum and Rodenburg, 1992). A related problem that severely affects

(a)

FIGURE 27. The modulus (a) and phase (b) of various calculated diffracted beams (see text)
as a function of specimen thickness: these are the beams that compose Πp . Solid line: (111). Lowest
amplitude line is the forbidden reflection (002); in this configuration it remains virtually unexcited
until a thickness of 20 nm. Other beams shown are (220), (004), and (113). The main inference is
that all the beams acquire a (roughly) linear phase change as a function of thickness. This is why the
phase-offset ptychograph (Fig. 28) is more closely representative of the atomic structure.
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(b)

FIGURE 27. (continued)

the experimental feasibility of the method is that these integrals must indeed
be performed over reasonably large fields of view. In other words, a great
deal of data must be collected before any processing can occur – unlike
the PIE method (the next section), there is no possibility of constructing a
real-time image of the object regardless of how much computing power is
available. If the detector pixels are finite in size – which they must be to get
any counts at all – then the aberration insensitivity is lost, at least to first
order. This is because when the aberrations are large, the intensities fringes
in the Ronchigram (the central disk, the shadow image of the probe-forming
aperture) are on a very small scale. When a finite pixel integrates over an area
larger than a fringe spacing, the required signal is obliterated. We can picture
this via reciprocity as the illuminating beam in TEM subtending a significant
range of incoherent beams at the specimen plane – an important factor which
affects the usable information limit. The form of the effective transfer function
given these parameters was examined by Nellist and Rodenburg (1994).
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FIGURE 28. Πp calculated for crystalline silicon on the [110] zone axis, but with a phase offset
(corresponding to the inner potential) subtracted from the ptychograph. The bottom row of images
shows the imaginary part of this phase-offset image (the top row is the real part of the same image).
The phase very closely represents the projection of the atomic potential in the z-direction, even up
to rather large thicknesses (17.3 nm on extreme right). Refer to Plamann and Rodenburg (1998) for
further details.

Now for the very bad news. It should be noted here that there are some sub-
stantial experimental complications with actually collecting and processing
these data, even if the mathematics is so “neat.” (This issue is rather close to
my own personal experience.) After the initial rush of optimism on realizing
the potential benefits of processing I (u,R) in various ways, and after much
fanfare at conferences declaring that this must be the way ahead for TEM,
experimental realities began to gnaw at the “good news.” Yes, the data seem
to be robust to so many of the usual constraints of the transfer function and
partial coherence, but there is a correspondingly large complement of different
experimental difficulties.

To construct Πp(r), we may only need a 2D plane in I (u,R), but we
still must collect the whole of I (u,R) in order to extract it. Between 1991
and 1996, our small Cambridge group struggled, with increasingly marginal
returns, to put this (and the WDDC method described in Section IV.D) onto
a practical experimental footing with high-energy electrons. Reconstructions
of Πp(r) were obtained, but their quality and scientific relevance were
exceedingly low. An example, the best obtained after several years’ work,
is shown in Fig. 29. It is on a grid of 32 × 32 pixels in R. That meant that
more than 900 diffraction patterns needed to be collected. Even if captured
at TV rates (40 ms/frame), this implies that we needed a total data capture
time of 36 s. To confirm that the reconstruction was at least reproducible,
the data were collected from the same region of specimen twice to check
that the reconstructions from independent data but from the same area of
object were the same. For a number of irritating experimental reasons related
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FIGURE 29. The phase of two Πp double-resolution electron ptychographs of amorphous
carbon. The two images are of the same area of the specimen (field of view 2.5 nm), but using entirely
different data collected one after the other. The accelerating voltage was 100 keV. The objective
aperture (in STEM mode) was stopped down so that the intrinsic resolution of the imaging lens
was 0.8 nm. The reconstruction doubles this resolution and is ∼0.4 nm. Certain features (e.g., the
bright V shape (top right) and the dark V shape (top left), are clearly reproduced. However, the
reconstructions are not very impressive given the effort undertaken to obtain the necessary data (see
text and Rodenburg et al., 1993 for further details).

to simultaneously controlling the microscope and synchronizing the data
capture, TV rates could not in fact be achieved in practice. The data for this
tiny image therefore took about 80 s to collect. This may not sound long
until it is remembered that all the foregoing theory assumes that the data
are collected from a set of equally spaced points in R, each separated at the
Ångstrom level, with no distortion in the scan. Lateral wobble in the probe
position (the source of the ptychographic phase) is fatal.

During the course of his doctoral work, Peter Nellist slowly removed more
and more of the wires connecting the console of the microscope (a VG
HB501-dedicated STEM) to the column in an attempt to remove sources
of electronic instability in the probe position. This, combined with the
other usual difficulties of TEM (such as specimen contamination, specimen
damage, and those phenomena that many microscopists secretly recognize
but do not very often talk about openly – like the occasional proclivity for the
specimen to jump laterally every few 10 s of seconds, presumably because of
charging – further hampered our efforts. Other irritations included charging of
the objective aperture, inducing non-round aberrations (in a dedicated STEM,
the objective aperture is the probe-forming aperture); hysteresis in the scan
coils; earthing loops; imperfections and blooming in the detector (we used an
image intensifier); the general paucity of electron counts that we could obtain

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 76
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



PTYCHOGRAPHY AND RELATED DIFFRACTIVE IMAGING METHODS163

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

when the source was sufficiently demagnified to achieve an appropriate (even
if rather low) degree of coherence; vibration in the field-emission tip (the VG
design had the tip mounted on a thin bent wire, which had several vibrational
modes with which we became all too familiar); and, perhaps worst of all,
the need to reduce thermal drift to a usable level of about 1 or 2 Å/min.
Even quite simple things, like focusing the probe at the specimen plane,
were difficult tasks when the machine was switched to collecting diffraction
patterns. (In short, this was very much a living nightmare, made bearable only
by the group’s persistent sense of humor.) Cowley and Winterton (2001) did
eventually implement the scheme successfully with electrons for a 1D scan of
probe positions across the edge of a nanotube. Perhaps now that detector and
data transfer/storage technology is so much more advanced, it may be worth
revisiting the technique for 2D objects.

C. Ptychographical Iterative (Pi) Phase-Retrieval Reconstruction

Conventional iterative phase-retrieval methods collect a set of data, whether a
single diffraction pattern from an isolated object, and then process this offline,
applying object size constraints in real space. However, as a microscopic
imaging method this leaves much to be desired. Microscopists need the ability
to scan their specimens over large fields of view in order to identify areas
of interest. Once identified, the user must be able to zoom in to a feature
of interest, observing it at higher and higher resolution. Isolated object PDI
methods do not allow for this sort of essential microscope functionality.

This sections discusses a recent development in the iterative phase-retrieval
method that actually owes much more to the ptychographical direct solution:
multiple diffraction patterns are recorded as an illumination field is shifted
with respect to the object of interest (or vice versa). A modified iterative
method is used to construct the resulting image – a ptychograph that we will
call Ππ , or a “pi-type” reconstruction. Here we examine in detail a particular
variant of pi-type reconstruction called the PIE algorithm.

Iterative methods of phase retrieval were first proposed by Gerchberg and
Saxton (1972) and later developed significantly by Fienup (1978, 1982). Early
work was performed on 1D objects, if only because of computational con-
straints at that time. John Chapman (as differentiated from Henry Chapman,
who has also contributed significantly to this field) was the first to consider the
practical issues surrounding an experimental implementation of the technique
in the electron microscope for the 1D image-diffraction plane iterative phase-
retrieval (Gerchberg–Saxton) method (Chapman, 1975). The development
of the personal computer greatly facilitated testing the efficacy of iterative
methods in two dimensions and determining the results of different feedback

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 77
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



164 RODENBURG

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

parameters immediately. In two or more dimensions, the method is much
more robust because of the usual phase problem constraints (discussed in
Section II.D). Rather than requiring both image and diffraction intensity data
(and hence a good-quality lens, as in the Gerchberg–Saxton algorithm), it
was found (Fienup, 1978) that simply knowing that the object is isolated,
effectively embedded in an empty unit cell that has roughly as many (known)
zero-valued pixels as pixels in the object image, then the 2D phase problem
can be very effectively solved without significant ambiguity. There are still
stagnation issues resulting from the competition of the inherently ambiguous
solutions (such as q(r) = q∗(−r), these having the same diffraction pattern
intensity). Fully complex images are more difficult to solve for (Fienup,
1987), but with some refinements, this can sometimes be achieved.

Following a rather stimulating conference organized by Spence et al. (2001)
on solution of the nonperiodic phase problem, I was encouraged to revisit the
ptychographical data set, but with the goal to try to incorporate into it all
the advantages of the iterative technique. The possibility of doing the PDI
experiment in the electron microscope had been discussed as part of a review
of ptychography (Rodenburg, 1989), but in view of the detector technology
available at that time had been dismissed. Using image-plate technology, Zuo
et al. (2003) obtained a very impressive reconstruction of a carbon nanotube
from a single electron diffraction pattern in a single, PDI data set. Given
that it was possible to achieve an iteratively reconstructed image from a
single diffraction pattern, and given that it is known that it is possible to
solve the phase problem directly from two or more diffraction patterns via
ptychography, it seemed logical to suppose that a hybrid method existed that
could exploit an optimized combination of these methods.

Landauer (1996) had briefly considered processing a number of images
collected under different illumination conditions in the electron microscope
to reconstruct the modulus and phase of the Fraunhofer diffraction using the
known constraint of the size and shape of the objective aperture lying in
the back focal plane of the object lens. This was far from lenses diffractive
imaging; the work was purely theoretical and had to assume the presence
of a good lens. However, it did indicate that multiple applications of the
Fienup hybrid input–output method could be “sewn” together to extend the
plane of interest (in this case, not the image but the diffraction pattern).
Faulkner and Rodenburg (2004) used an aperture constraint alone, presumed
to be coincident with the object plane, to show in model calculations that
the iterative method could indeed be applied to extended real-space objects.
Preliminary investigations into the possibility of manufacturing an aperture
via focused ion beam lithography that was small enough to perform this type
of reconstruction in the electron microscope were fraught with difficulties.
The aspect ratio of the hole required in order to block off the unwanted
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radiation was large (say a diameter of 10 nm with a depth of 200 nm). Such
apertures contaminate quickly in the microscope and introduce channeling
and propagation artifacts.

It became obvious that in any practical implementation of iterative phase-
retrieval ptychography, at least in the electron microscope, it would be
necessary to use a focused spot of illumination of radiation, as in the STEM
configuration. Unfortunately, such patches of illumination are necessarily
“soft” in the sense that there are always low-amplitude ringing effects that
extend to large distances in the object plane. Because the lens has a limited
extent in reciprocal space, its real-space impulse-response function is always
smooth. There are therefore no analogous support-type constraints in real
space. Furthermore, any aberration or defocus in the lens introduces phase
changes into the illuminating beam. A method was required that would
feed into the phase-retrieval loop the essence of ptychography: when the
illumination function is moved, its shape remains constant; equivalently, the
diffraction pattern is a convolution, but a convolution that can be recorded
for a series of phase ramps applied across the Fourier transform of the
illumination function, according to the fundamental ptychographical Eq. (41).

The breakthrough came with the development of the so-called PIE update
function (Rodenburg and Faulkner, 2004a, 2004b). The use of the measured
modulus constraint in the Fraunhofer diffraction plane is identical in PIE to
that used in all conventional iterative phase-retrieval methods (Marchesini,
2007, provides an excellent review). The difference with PIE that is there
is no simple support constraint in real-space. Instead, a current estimate
of the object function is changed incrementally according to the intensity
information that has been fed in from the diffraction plane.

The iteration proceeds as follows. We seed the algorithm with an initial
estimate of Ππ , which we will call Πe,1(r), this being our first (n = 1) such
estimate, labeled (A) in Fig. 30. It is usual to put Πe,1(r) = 1; that is, we start
by supposing that Πe,1(r) is of the form of a transmission grating function of
unity transmission (free space) at all points in r . Suppose we have a current
nth estimate of the ptychograph Πe,n(r). Then in the next (n + 1)th iteration,
a modified estimate, will be given by Πe,n+1(r) according to the equation

Πe,n+1(r) = Πe,n(r) + U(r)
[
ψc,n(r,Rj ) −

(
a(r − Rj ) · Πe,n(r)

)]
,

(89)
where U(r) is an update function, given by

U(r) = |a(r − Rj )|
|amax(r − Rj )|

a∗(r − Rj )

(|a(r − Rj )|2 + ε)
. (90)

In Eq. (89) we multiply our current estimate of the ptychograph by our
illumination function (which we presume is known accurately) when it is
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FIGURE 30. The PIE flow diagram. At ‘A’ we start with an initial guess of the object function,
Πe,n(r), which usually is perfectly transparent (i.e., of unity modulus everywhere and zero phase).
This estimate is then continuously modified at each iteration via the update function. An iteration
consists of choosing a particular illumination position, Rj , and then forming ψe = a(r−Rj )·Πe,n(r).
We then propagate this to the far field (in fact, any propagator can be used), preserve the phase of the
resulting diffraction pattern amplitude but substitute the modulus calculated from the square root of
the intensity of the diffraction pattern obtained from that probe position Rj to give an estimate of the
complex value of the diffraction pattern. The difference between ψe and the corrected back-propagated
exit wave, ψe , is used to update Πe,n(r). Any number of diffracted patterns can be used (three are
shown, one dotted). Hollow pointers represent the transfer of data, line arrows show the flow of control.

at a particular position Rj with respect to the object function. Assuming
the multiplicative approximation (Eq. (3)), we now form what would be an
estimate of the exit wave if the object was truly a 2D grating, represented in
Eq. (89) by the last term in the square brackets, that is, a(r − Rj ) · Πe,n(r).
This wave is then propagated to the detector plane where, as usual in iterative
methods, we preserve the phase of the resulting calculated diffraction pattern
but replace the modulus with

√
I (u,Rj ). We then transform back to the
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object plane to find a “corrected” estimate of the same exit wave function
(corrected in the sense that measured intensity data in the far-field has now
modified our original estimate of the exit wave), appearing as the first term
in the square brackets of Eq. (89), which we call ψc,n(r,Rj ). We subtract
(point-by-point) the estimated exit wave from the corrected exit wave. The
resulting difference function is then fed back into our running estimate of the
ptychograph. The amount we change the current estimate Πe,n(r) is different
at different parts of the image, weighted point by point as a function of the
probe amplitude when it is positioned at Rj . In Eq. (90) amax is the maximum
modulus value of the illumination function, and ε is a constant determined by
the total number of counts in a typical diffraction pattern. This term is like a
Wiener filter as used in conventional deconvolution methods to suppress the
effects of noise in the data, especially in the regions where a(r) has low or
zero amplitude. It is essentially a division by a(r), effecting the deconvolution
of the ptychographic folding (Eq. (41)) of the far-field intensity.

Although the PIE can be run with some success using only one diffraction
pattern (one value of Rj ), its real advantages arise when data from different
probe positions are used concurrently. If the area of the illumination function
has an approximate diameter d , convergence is rapidly increased if data
are collected from a grid of points separated in R by about d/2. Thus,
for example, we could collect four diffraction patterns from R1 = (0, 0),
R2 = (d/2, 0), R3 = (0, d/2), and R4 = (d/2, d/2). The first iteration could
use experimental data I (u,R1), the second I (u,R2), and so on, returning at
n = 5 to reuse data I (u,R1) and so on, reusing each diffraction pattern in
a cyclically repeating order. However, many other permutations are possible.
The j th pattern could be used for the first hundred iterations before moving
on to the (j + 1)th pattern. Clearly, this latter strategy results in rather slower
convergence because the ptychographic phase data are only being exploited
once in every hundred iterations.

In general, processing a different pattern for each subsequent iteration is the
most effective strategy. Indeed, this can produce a reasonable quality image
after iterating with each diffraction pattern just once (Rodenburg et al., 2007a)
In conventional iterative methods, it routinely takes thousands of iterations
before a reasonable image can be obtained. The method is also fantastically
immune to noise. Faulkner and Rodenburg (2005) modeled a variety of
experimental sources of noise in a STEM configuration and found that
recognizable images could be obtained when Poisson noise corresponding
to very low beam currents was added. Up to 50% of random noise added to
each detector pixel reading also produced interpretable images. Conventional
iterative methods often cease to converge sensibly at noise levels of more a
than few percent.
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It should be remembered that the data collection process is completely
decoupled from the iterative calculation itself. The reconstruction can be
processed offline, after all the data have been collected, or in real time,
concurrently as further data are being collected. Because the PIE is completely
indifferent to the position of the next Rj , the field of view can extended
continuously, in real time, according to whatever part of the specimen the
user wishes to image. This is one of the defining properties of PIE. The
field of view is independent of the size of the detector. Clearly, the sampling
condition must still be satisfied, but this depends only on the width of the
illumination function – it is nothing to do with the size of the final field of
view. The forward and back propagations necessary for each iteration can be
conducted on a reciprocal space sampling of say, &us , which defines a value
of d ≈ 2/&us . However, any particular value of Rj is unconstrained by d . We
could use data from R1 = (100d, 50d) and R2 = ((100 · 5)d, (50 · 5)d) and
use the update function to alter only the area of ptychograph spanned by the
illumination function when it is centered on either of these coordinates. There
is nothing to stop Ππ spanning a total image area of, say, 1000×1000d2. If the
detector has 1000 ×1000 pixels, then in this situation the entire ptychograph
could contain 106 ×106 pixels: unlike conventional iterative methods, the size
of the reconstruction can be as large as desired.

Figure 31 shows a visible light experimental demonstration of the PIE
method (from Rodenburg et al., 2007a). The illumination function was
generated simply by an aperture somewhat upstream of the object (a 3-mm
long ant sectioned and mounted between a microscope slide and cover slip).
The aperture was 0.8 mm in diameter, with λ = 630 nm. The object was
moved over a grid of 10×10 illumination positions, each separated by slightly
less than half the aperture width. An example of a typical diffraction pattern
is shown in Fig. 32, as is the recorded intensity of the illumination function at
the plane where it impinges on the object. As can be seen, the disc of the real-
space aperture has been blurred out by propagation, causing Fresnel fringe-
like features to develop around the edges of it. This function is therefore “soft”
and does not present us with the sort of sharp support function required for
conventional iterative phase retrieval. Figure 31 shows intensity and phase
reconstructions of Ππ . The resolution of the ptychrograph is ∼17 µm; that is,
about 50 times smaller than the diameter of the aperture.

Note that in the phase of the reconstruction we can discern a phase ramp
across the entire image. This is due to the cover slip not being perfectly
parallel to the underlying slide. More recent unpublished work has shown
slowly changing phase distribution over very wide fields of view can be
accurately reconstructed. The same sort of information can be extracted from
holograms, but here we do not have any interferometric optical component
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FIGURE 31. Visible light Ππ reconstruction (i.e., Πe,n, where in this case n = 25). Residual
structure in the modulus (left) arises from slight detector misalignment and misestimate of the
illumination function: the 10 × 10 scan of probe positions is hence visible. Note that in the phase
image (right), a slowly varying phase ramp is discernible – such large-scale phase variations (in this
case due to a curved cover slip) are lost in conventional Zernike and electron microscopic images. The
ant is ∼3 mm in length, the scale bar is 1 mm. For more details, see Rodenburg et al. (2007a).

FIGURE 32. Raw data of ant reconstruction shown in Fig. 31. The intensity of the illumination
function (left) is measured at the plane of the object. Note that propagation between the aperture and
the object has led to the development of Fresnel fringes around its edges. A typical diffraction pattern
is shown on the right.

or lens, except the diffraction itself occurring at the object plane. This is a
potentially important imaging capability of pi-type ptychography.

A much more scientifically significant result is shown in Fig. 33 (from Ro-
denburg et al., 2007b) where an exactly analogous experimental configuration
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FIGURE 33. Hard X-ray PIE reconstructions from Rodenburg et al. (2007b). Image A:
High-resolution SEM image of the object. B: Examples of nine of the diffraction patterns recorded
from the illumination at the positions circled on A. C: Modulus and D phase of the Ππ ptychograph.
Aliasing effects in the reconstructions are due to the sampling in the image file; these features are not
visible in the raw data – see the plot across the outer rings of the zone plate in D.

was used with hard (8-keV) X-rays. In visible light optics there is very little
need to resort to ptychography to obtain good-quality images. However, any
sort of imaging with X-rays is difficult, and especially difficult with hard
X-rays because of the thickness required in the zone plate to introduce the
requisite phase change in the incident beam. The round object in the center
of Fig. 33 is in fact such a zone plate, although here it is being used as a
resolution test object. The experiment was performed at the Swiss synchrotron
at the Paul Scherrer Institute in collaboration with the group of Franz Pfeiffer.
The only difference in the experimental setup is the source of radiation
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(a substantially coherent third-generation synchrotron) and the scale of the
aperture, which in this case had a diameter 5 µm. The aperture to object
distance was a few millimeters. It was not possible to image the intensity of
the incident illumination field, and so this had to be estimated by assuming the
aperture was a perfect disk illuminated evenly by a perfectly coherent plane
wave and propagating this computationally to the object plane. The object
was stepped through a square array of 17 × 17 positions, each separated from
one another by 2 µm. The (mechanical) stepper motors used were not of a
particularly accurate: piezoelectric actuators could certainly improve on the
result. The specimen includes a random distribution of gold particles scattered
around the zone plate.

The reconstruction (especially the intensity component) is far from perfect,
but this was the first attempt at this experiment; the data were collected over
a single weekend on a beamline that was scheduled for maintenance. Given
that the outer zones of the zone plate are resolved, the ptychograph has clearly
achieved resolution that is as good as that which could be obtained from this
(reasonably state-of-the art) zone plate when used as an imaging lens. With
further development, it would seem that pi imaging might provide routine
hard X-ray micrographs at potentially much higher resolution than currently
available technology.

Pi is certainly the most compact and elegant solution to the calculation
of Π(r) from the fundamental ptychographic Eq. (41). The deconvolution
of the diffraction plane amplitude (Fig. 14) is achieved in real-space by the
division implicit in Eq. (41) of a(r). The method allows for immediate real-
time output of ptychographs as data are concurrently being collected. The
solution so obtained can be refined in one part of the field of view while
further data collected from new areas of the object. There is no limit to the size
of the field of view. The computational method has been called an “engine”
(Faulkner and Rodenburg, 2005) – a “ptychographic iterative engine” (PIE) –
because, unlike all the preceding iterative phase algorithms, the measured data
arrays can be continuously expanded while the algorithm progresses through
the data. In principle, the user can define in real time which parts of the objects
should be reconstructed.

The pi data set is of dimension Nu × Nv × N1−∞ × N1−∞. In this sense,
it really is a diffractive method, most of the information being captured in
the u coordinate, only a few sparse points in the R plane being required.
It is both extremely flexible in that only as much data as are needed for
a particular object size need to be collected (the number of illumination
positions is variable between 1 and infinity). Since each area of the object
is generally illuminated about twice, it is exceedingly efficient relative to
the Bragg–Brentano or Wigner distribution deconvolution (WDDC) methods
(Sections IV.B and IV.D). Indeed, the method will work even if most of the
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object is only illuminated once, although increased redundancy helps with the
convergence of the algorithm.

D. The Wigner Distribution Deconvolution Method

In Section IV.B we formed a function G(u,U), calculated by taking the
Fourier transform of I (u,R) with respect to the R coordinate. From this
we could extract B(U) and hence the projection pytochograph. However,
B(U) is just a 2D subset of an intrinsically 4D data set. By picking only
one particular Fourier component in U for each location in u, a huge amount
of data are wasted. In fact, the Bragg–Brentano subset was only developed
much later as a result of a different line of reasoning that had been sparked
in the autumn of 1988 when Owen Saxton very helpfully introduced me to
Professor Richard Bates, who was passing through Cambridge on his way
from New Zealand to a conference in Europe. Our meeting only lasted 20
minutes and was mostly spent brewing and drinking tea. Richard was severely
jet lagged. His long white hair was characteristically disheveled; he struck me
as the archetypal mad professor. I had an imminent teaching commitment that
afternoon and so had to bring the social niceties to an abrupt end. In the last
two minutes before racing off, I scribbled down Eq. (41) and said that I would
be very grateful to receive any suggestions on how to obtain a comprehensive
solution for the object function q(r), given only the intensity I (u,R) and
a knowledge of a(r). I did not hear from him at all until I received a telex
6 months later: it said, “I have solved your problem. Please send fax number.”
The stream of equations that subsequently came out of the fax machine at
first completely confused me. A day or two later I was first enlightened and
then delighted. Two weeks later I was frantically writing a research grant
proposal. Without that telex, this Chapter, and most of what is in it, would not
exist. The brief collaboration that followed was truly fruitful. I was a cynical
experimentalist; Richard was an inspired theoretician who passionately loved
the phase problem and had worked on it for many years from a wide range of
perspectives. I could relate many stories at this point: sometimes sparks would
fly; Richard was a true original but also, at times, incredibly stubborn. He died
of cancer 2 years after our first meeting, just as a vast horizon of future work
was expanding before us. I was impressed that he remained absolutely focused
on productive work right until the very end, never at any point being aggrieved
that fate had determined that he would die much younger than today’s average
span.

What he wrote in that fax (disguised somewhat in his inimitable nomencla-
ture and penchant for massive equations) was that if

H(U , r) =
∫∫

I (u,R)ei2π(R·r−u·U) du dR, (91)
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then

H(U , r) = χq(U , r) · χa(U ,−r), (92)

where for some general function, f (r),

χf (U , r) =
∫

f (r + ra)f
∗(ra)e

i2πU ·ra dra. (93)

Similar equations occur in the radar literature, where Eq. (73) defines the
“ambiguity function,” although it that field the measured data are phase
sensitive insofar as the time of arrival of a reflection is known. This class
of function is also called a Wigner distribution function (Johnston, 1989) –
it arises as an expression of the uncertainty principle in quantum mechanics,
reciprocal and real-space coordinates.

Why is this important? First, it served as a very useful mathematical tool
to analyze the whole of the “entire” data set I (u,R). Second, it showed that
I (u,R) could be decomposed in this mixed real and reciprocal space into
a product of two functions, one of which depends only on the specimen
transmission function q(r), the other depending only on the illumination
function a(r). It follows that I (u,R) can in principle be separated via
deconvolution into a 4D function that depends only on the object function
and has all the properties of the probe forming optics, whatever they may
be, removed from it. Third, once this separation has been accomplished, one
further Fourier transform (over two of the four coordinates) of χq(U , r), can
yield one of two representations of all the relative phase relationships in the
scattered wavefield. In real space we have

L(U ,R) = q(R + U)q∗(R), (94)

and in reciprocal space we have

D(u, r) = Q∗(u − r)Q(u). (95)

It is perhaps not immediately obvious that either one of the two equations
above gives the phase of the entire scattered wavefield (or at least, the phase
and amplitude of the resulting ptychograph). In fact, it does so with massive
overredundancy. Of course, in any phase problem we are never going to able
to solve the absolute phase of the scattered waves because this changes at very
high frequency as a function of time and so is meaningless in the context of
the time-independent wave equation. This is expressed in, say, Eq. (94), by
the fact that only the difference in the complex value of q between a point
at R and R + U is expressed in L(U ,R). We therefore start by agreeing to
assign zero phase to one pixel in q(R), for example, by putting

q(0) =
√

L(0, 0). (96)
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The WDDC ptychograph is then given by

ΠW(U) = L(U , 0)√
L(0, 0)

. (97)

However, we can choose to assign any phase to any pixel in q(R), and form a
different ptychograph by dividing L(U ,R) by that pixel. In other words, we
can form a whole family of ptychographs

ΠW(U ,RU) = L(U ,Ru)

|√L(0,Ru)|
. (98)

It was quickly discovered (Rodenburg, 1989) that though the WDDC could be
made relatively immune to noise by performing the deconvolution step using
a Wiener filter, fatal errors arose when the illumination function was “soft” in
being bandwidth limited in the sense that there is a sharp aperture in the back
focal plane (e.g., as in the case when a(r) is of the form of a STEM probe
generated by a lens with a diaphragm). This is akin to the difficulties that arise
in iterative phase retrieval in the same configuration when there is no definite
and sharp support function in the object plane. The calculation presented in
Bates and Rodenburg (1989) had to be performed using a truncated probe (i.e.,
a finite probe cut off with a sharp edge) in order to make the method work at
all. Although this was alluded to in the last paragraph in Section 3 of that
paper, it was of great concern to the author. Clearly, if a sharp-edged feature
is a requirement of the method, then it is also true that a lens of very wide
numerical aperture is required, defeating the whole purpose of ptychography.

The reciprocal version of the method (Eq. (96)) was found much later to
overcome this latter difficulty (Rodenburg and Bates, 1992). In reciprocal
space, the aperture function is sharp, and so its Fourier transform has value
out to very large values of u, meaning that the deconvolution step does not
encounter divide-by-zeros except at a few points; these can be avoided by
using other volumes of the data set (which is extremely redundant). Once
again, we can construct a whole family of ptychographs. The fact that the
aperture is finite may seem to imply that one such ptychograph, for example

%
(
ΠW(−r)

)
= D∗(0, r)√

D(0, 0)
(99)

would be limited in r , and hence there would be no gain in resolution. But
this is not the case. We use the term stepping out (see Section IV.A and
Fig. 17(a)) to suggest that even if D(u, r) is of limited extent in r , we can
use the phase reconstructed from one plane, say from D(0, r), to obtain an
estimate of %(ΠW(r)) up to the aperture diameter 2α. Once we have the phase
at %(ΠW(2α)), we now use a new plane of D(u, r), namely, D(2α, r), to
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increase the extent of %(ΠW(r)), via

%
(
ΠW(−2α − r)

)
= D∗(2α, r)

%(ΠW(−2α))
. (100)

The procedure can be repeated many times. There is also an equivalent but
much richer set of possible phase-closure paths (as in the crystalline case; see
Fig. 20). D(u, r) can be considered as a continuous set of all relative phase
differences between every pair of Fourier components of ΠW .

This leads to an important – perhaps the most important – theoretical
result derived from the WDDC analysis. In practice, no electron or X-ray
experiment is perfectly coherent. Even the Bragg–Brentano subset is subject
to the coherence envelope if, as must be the case, the detector pixels are of
finite size. Consider the question of spatial coherence deriving from the fact
that any practical source is also of finite size. In the STEM configuration this
means the back focal is not illuminated perfectly coherently. In the diffraction
plane we can no longer write Eq. (41), but we must moderate the strength of
the interference between every pair of beams that interfere with one another
by a coherence function. The entire data set becomes

I (u,R) =
∫∫

Γ (u − ua)A(ua)Q(u − ua)A
∗(ub)Q

∗

× (u − ub)e
i2πR·(ua−ub) dua dub, (101)

where Γ (u − ua) is called complex degree of coherence: assuming that the
propagator between the source and the back focal plane of the probe-forming
lens satisfies the Fraunhofer approximation, then, via the van Cittert–Zernike
theorem (see, for example, Born and Wolf, 1999), Γ (u − ua) is given by the
Fourier transform of the intensity profile of the source function. We simply
state the result (derived in Rodenburg and Bates, 1992) that under these
circumstances

D(u, r) = Γ (r)Q∗(u − r)Q(u). (102)

In other words, if the transfer function is limited by partial coherence
effectively reducing the usable aperture size, then this appears just as an
attenuation factor in D(u, r), but only in the r-directions. The stepping
out process is not affected by finite aperture size, requiring instead only
adjacent beams to interfere with one another; the quality and resolution of
the reconstruction obtained via WDDC are not limited by partial coherence.
This is equivalent to the observations made in Section IV.A in the context
of crystalline ptychography. Indeed, the whole point of the silicon line-data
reconstruction was to demonstrate that ptychography could extract image data
at a resolution not limited by the coherence width of the lens. Historically,
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the realization of the independence of the ptychographical data set on partial
coherence came earlier (by about 4 years) than the very limited proof of this
fact achieved using crystalline line-scan data set (described in Section IV.A).
It was the magnitude of the experimental difficulties in collecting the entire
data set (see Section IV.B) that meant this (perhaps the most crucial) property
of the WDDC data set could not be demonstrated on nonperiodic objects.
Sadly, the order of publication has implied that the only ptychographical data
set that is immune to partial coherence is the crystalline data set.

A 1D visible light demonstration of the WDDC principle was first achieved
by Friedman (Friedman and Rodenburg, 1992) as his master’s project.
McCallum and Rodenburg (1992) demonstrated a 2D imaging version of
the technique, also using visible light. Pictures of the reconstructions are
shown in Fig. 34. Again, these are not particularly impressive, but it must
be remembered that even the largest laboratory-scale computer workstations

FIGURE 34. First visible light optical demonstration of the WDDC method. The top left image
is the intensity of a good-resolution conventional image, taken with a lens of relatively large numerical
aperture. The bottom left image is the conventional image obtained with the aperture stopped down
so that all the image features are no longer resolvable. All the other images are reconstruction from
ptychographical data collected using this latter (small numerical aperture) lens configuration. The top
middle and right images are the modulus and phase of the ΠW ptychograph reconstructed at double
resolution. The corresponding lower pair of images are at four times improved resolution (compare
bottom left), thus demonstrating the so-called stepping-out procedure for nonperiodic objects. See
McCallum and Rodenburg (1992) for experimental details.
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FIGURE 35. First demonstration of the WDDC method using X-rays by Chapman (1996).
Top left: the incoherent bright-field image of the object (a group of latex particles). Top right: the
conventional coherent bright-field image taken from an offset pixel in the diffraction plane. Lower
images are the modulus (left) and phase (right) of the ΠW ptychograph. The scale bar is of length
0.5 µm.

at that time only had about 64 Mbyte of RAM. Given that we performed the
deconvolution in double-precision arrays, it becomes clear why images on
a scale larger than 32 × 32 pixels (i.e., 900 diffraction patterns) could not
be processed. In an astonishing solo effort, Henry Chapman demonstrated
the technique using soft X-rays (Chapman, 1996), as shown in Fig. 35.
These results were much more impressive than anything obtained in the
electron microscope, but the gains in resolution relative to the incoherent
image were nevertheless not entirely compelling given the extreme quantities
of data and beam time required for the technique. Nellist and Rodenburg
(1994) explored how other aspects of partial coherence in the electron
microscope – for example, lens instability, detector pixel size (which can
be thought of via reciprocity as form of incoherence function), and source
voltage instability – would impact the WDDC method. McCallum and
Rodenburg (1993a) showed that the huge redundancy in the entire WDDC
set means that it is possible to solve for both the object function and the
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illumination function simultaneously, provided it is at least known that the
illumination function is well localized. For those who prefer not to deal with
the mathematics, Rodenburg (2001) has written a rather simplified review
using pictorial representations of how WDDC relates to Fourier holography,
tilt-series reconstruction, and other methods.

It is possible that it may be appropriate to revisit the WDDC method now
Moore’s law has made computers so much larger, faster, and more powerful.
Certainly there are many unanswered questions about how best to optimize the
technique, especially in the context of recent success of the PIE method. The
latter is far more practical and much easier to implement. However, melding or
extending PIE with WDDC or the Bragg–Brentano data in some way should,
I think, be the subject of further work.

V. CONCLUSIONS

The scope of this Chapter has been limited to a particular definition of the
rarely used term ptychography. I believe the definition chosen is in the spirit
of that intended of its inventor, Walter Hoppe. However, there is no doubt
that I have stretched this definition to embrace some techniques that are
more comprehensive than the original concepts outlined in Hoppe’s 1969
papers. Indeed, my chosen formal definition excludes one of the techniques
(the two-beam technique) published under the designation “ptychography” by
Hoppe and his then research student, Hegerl (Hegerl and Hoppe, 1972). Some
years ago I had dinner with Hegerl (who is now retired). I got the distinct
impression that he did not very much enjoy working on his doctorate. Even
in the Ultramicroscopy issue celebrating Hoppe’s retirement, Hoppe (1982)
himself wrote about the subject in such a way as to suggest that this was
an obscure but interesting idea that was never properly pursued and would
probably be exceedingly difficult to put into practice. Hegerl certainly seemed
to be genuinely surprised that anyone should be bothered to want to know
more details about the work that he had undertaken during a period of his life
that he was grateful to have put behind him. Indeed, his initial reaction seemed
to be that anyone pursuing this line of reasoning must themselves be heading
towards disillusion and despair. (During the 1990s, I did temporarily reach a
similar state of mind for the reasons discussed in Section IV.B.)

Since I am so close to the subject, it is possible that I have overinterpreted
Hoppe’s insight into the phase problem, unconsciously dressing it up with
the wisdom of hindsight. His original thoughts certainly appear to reside in
isolation from the rest of the existing phase-problem literature. I suppose the
concept was simply too far ahead of its time. In 1968 there were huge barriers
to putting the idea into practice at atomic wavelengths. The first was that any

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 92
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



PTYCHOGRAPHY AND RELATED DIFFRACTIVE IMAGING METHODS179

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

sort of computing was extraordinarily more difficult than it is today. I imagine
that Hegerl spent all of his research coding the necessary equations to solve for
the ptychographical phases. The same work today can be done in an afternoon
using MATLAB. Indeed, solution of the phase problem in any field progressed
so much faster once computers were powerful enough to provide real-time
graphical output of images and functions. Such facilities only became widely
available in the 1980s, and even then they were not entirely easy to use.
Most of the progress made in the early 1990s with the WDDC and Bragg–
Brentano methods derived from the access to a dedicated network of high-
powered workstations (which were grossly underpowered relative to a modern
laptop), all of which were equipped with graphical interfaces. The 4D data
sets we used could be processed by the image processing program IMPROC,
originally developed by Owen Saxton. The version we used had been greatly
changed first by Richard Bates’ New Zealand group and then by Bruce
McCallum, who had been a doctoral student with Bates and who rewrote it
into a 4D version. Once we had immediate access to graphical output from
slices taken through the entire 4D set and its Fourier transform, many new
ideas came to mind and could be put into practice.

Aside from computers, the two most important experimental issues that
affect ptychography relate to the degree of coherence in the illuminating beam
and the detector efficiency and dynamic range. In the case of X-rays, third-
generation sources with high coherence have only relatively recently become
available. Although a suitable degree of coherence could be achieved in the
STEM about the time of Hoppe’s work (Crewe was at that time obtaining the
first atomic-resolution STEM results; Crewe et al., 1968), this technique was
far from routine and vacuum constraints in STEM meant that photographic
film (the highest-efficiency 2D detector technology at that time) could not be
used because it would outgas into the ultrahigh vacuum. The work undertaken
in the early 1990s on the method was therefore really the first time it could
ever have been undertaken. Even then the detectors and computing facilities
were only marginally capable of doing justice to the technique. Now that these
technological difficulties are tractable, perhaps the age of ptychography has
arrived at last.

Various flavors of ptychography are discussed in Section IV. Unlike holo-
graphy or through-focal reconstruction, the method does not recover the exit
wave unless the object is thin. However, the image it provides can, if processed
appropriately, give a good representation of the object structure, even in the
presence of dynamical scattering. Furthermore, the scattering geometry of
ptychography (Fig. 14) gives access to a rather larger volume of reciprocal
space than that of the conventional image. Section IV.B showed why one sub-
set of these data can provide a perfect projection of the object, suggesting that
ptychography may be extended to 3D imaging via conventional tomographic

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 93
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



180 RODENBURG

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

techniques. A further key advantage of the technique is that it is not subject to
the usual limitations of the coherence envelope and hence there is, in theory,
no limit to the resolution of the ptychography other than the wavelength. What
has not been discussed here is the fundamental limitations imposed by thermal
diffuse scattering and the fall-off of the elastically scattered signal at high
angles, at least in the case of electrons. This will certainly define an ultimate
physical limitation to the resolution of electron ptychographic reconstructions
(which, short of using atoms or protons, will provide the highest imaging
resolution of the solid state). However, these limits can in principle be reached
via ptychography without expensive lenses or very high coherence. Perhaps
the biggest potential benefit of ptychography will therefore be to dispose of
the main costs of the electron microscope (the lenses), substituting them for
a good detector and a large (but now inexpensive) computer. No other phase-
retrieval technique can offer this prospect while at the same time delivering
the usual imaging functionality of a microscope.

REFERENCES

Bates, R.H.T., Rodenburg, J.M. (1989). Sub-Angstrom transmission mi-
croscopy: A Fourier transform algorithm for microdiffraction plane inten-
sity. Inform. Ultramicrosc. 31, 303–308.

Berndt, H., Doll, R. (1976). Method for direct phase determination in electron
microscopic diffraction patterns. Optik 46, 309–332.

Berndt, H., Doll, R. (1978). Electron interferences for evaluation of phases in
electron-diffraction patterns. Optik 51, 93–96.

Berndt, H., Doll, R. (1983). An electron interferometer for phase determina-
tion in diffraction patterns of natural crystals. Optik 64, 349–366.

Born, M., Wolf, E. (1999). Principles of Optics, seventh ed. Cambridge Univ.
Press, Cambridge.

Burge, R.E., Fiddy, M.A., Greenaway, A.H. (1976). Phase problem. Proc.
Roy. Soc. (London) Series A 350, 191–212.

Chapman, J.N. (1975). Application of iterative techniques to investigation
of strong phase objects in electron-microscope. 1. Test calculations. Phil.
Mag. 32, 527–552.

Chapman, H.N. (1996). Phase-retrieval X-ray microscopy by Wigner-
distribution deconvolution. Ultramicroscopy 66, 153–172.

Coene, W., Janssen, G., deBeeck, M.O., van Dyck, D. (1992). Phase retrieval
through focus variation for ultraresolution in field-emission transmission
electron microscopy. Phys. Rev. Lett. 69, 3743–3746.

Cowley, J.M. (1995). Diffraction Physics. North-Holland, Amsterdam.
Cowley, J.M. (2001). Comments on ultra-high-resolution STEM. Ultrami-

croscopy 87, 1–4.

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 94
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



PTYCHOGRAPHY AND RELATED DIFFRACTIVE IMAGING METHODS181

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

Cowley, J.M., Winterton, J. (2001). Ultra-high-resolution electron mi-
croscopy of carbon nanotube walls. Phys. Rev. Lett. 87. art. No. 016101.

Crewe, A.V., Wall, J., Welter, L.M. (1968). A high-resolution scanning
transmission electron microscope. J. Appl. Phys. 39, 5861–5868.

Faulkner, H.M.L., Rodenburg, J.M. (2004). Moveable aperture lensless trans-
mission microscopy: A novel phase retrieval algorithm. Phys. Rev. Lett. 93.
Article No. 023903.

Faulkner, H.M.L., Rodenburg, J.M. (2005). Error tolerance of an iterative
phase retrieval algorithm for moveable illumination microscopy. Ultrami-
croscopy 103, 153–164.

Fienup, J.R. (1978). Reconstruction of an object from the modulus of its
Fourier transform. Opt. Lett. 3, 27–29.

Fienup, J.R. (1982). Phase retrieval algorithms – A comparison. Appl. Opt. 21,
2758–2769.

Fienup, J.R. (1987). Reconstruction of a complex-valued object from the
modulus of its Fourier-transform using a support constraint. J. Opt. Soc.
Am. A 4, 118–123.

Frank, J. (1973). Envelope of electron-microscopic transfer functions for
partially coherent illumination. Optik 38, 519–536.

Friedman, S.L., Rodenburg, J.M. (1992). Optical demonstration of a new
principle of far-field microscopy. J. Phys. D. Appl. Phys. 25, 147–154.

Gabor, D. (1948). A new microscopic principle. Nature 161, 777–778.
Gabor, D. (1949). Microscopy by reconstructed wave-fronts. Proc. Roy. Soc.

(London) A 197, 454–487.
Gerchberg, R.W., Saxton, W.O. (1972). Practical algorithm for determination

of phase from image and diffraction plane pictures. Optik 35, 237–246.
Giacovazzo, C. (1999). Direct phasing in crystallography: Fundamentals and

applications. In: International Union of Crystallography Monographs on
Crystallography. In: Oxford Science Publications, vol. 8. Oxford.

Gureyev, T.E., Roberts, A., Nugent, K.A. (1995). Partially coherent fields,
the transport-of-intensity equation, and phase uniqueness. J. Opt. Soc. Am.
A 12, 1942–1946.

Hawkes, P.W., Kasper, E. (1996). Principles of Electron Optics. Academic
Press. [see pp. 1641–1649].

Hegerl, R., Hoppe, W. (1970). Dynamische Theorie der Kristallstruktur-
analyse durch Elektronenbeugung im inhomogen Primarstrahlwellenfeld.
Ber. Bunsenges. Physik. Chemie 74, 1148–1154.

Hegerl, R., Hoppe, W. (1972). Phase evaluation in generalized diffraction
(ptychography). In: Proceeding of the 5th European Congress on Electron
Microscopy, pp. 628–629.

Hodgkin, D.C., Kamper, J., Mackay, M., Pickworth, J., Trueblood, K.N.,
White, J.G. (1956). The structure of vitamin-B12. Nature 178, 64–66.

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 95
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



182 RODENBURG

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

Hohenstein, M. (1992). Single side-band imaging in high-resolution electron-
microscopy. Appl. Phys. A 54, 485–492.

Hoppe, W. (1969a). Diffraction in inhomogeneous primary wave fields. 1.
Principle of phase determination from electron diffraction interference.
Acta Crystallogr. A 25, 495–501.

Hoppe, W. (1969b). Diffraction in inhomogeneous primary wave fields. 3.
Amplitude and phase determination for nonperiodic objects. Acta Crystal-
logr. A 25, 508–515.

Hoppe, W. (1982). Trace structure analysis, ptychography, phase tomography.
Ultramicroscopy 10, 187–198.

Hoppe, W., Strube, G. (1969). Diffraction in inhomogeneous primary wave
fields. 2. Optical experiments for phase determination of lattice interfer-
ences. Acta Crystallogr. A 25, 502–507.

Johnston, J.A. (1989). Wigner distribution and FM radar signal design. IEE
Proc. F 136, 81–87.

Landauer, M.N. (1996). PhD thesis, University of Cambridge.
Lichte, H. (1986). Electron holography approaching atomic resolution. Ultra-

microscopy 20, 293–304.
Lin, J.A., Cowley, J.M. (1986). Reconstruction from in-line electron holo-

grams by digital processing. Ultramicroscopy 19, 179–190.
Marchesini, S. (2007). A unified evaluation of iterative projection algorithms

for phase retrieval. Rev. Sci. Instrum. 78. Article No. 011301.
McBride, W., O’Leary, N.L., Nugent, K.A., Allen, L.J. (2005). Astigmatic

electron diffraction imaging: A novel mode for structure determination.
Acta Crystallogr. A 61, 321–324.

McCallum, B.C., Rodenburg, J.M. (1992). 2-Dimensional optical demonstra-
tion of Wigner phase retrieval microscopy in the STEM configuration.
Ultramicroscopy 45, 371–380.

McCallum, B.C., Rodenburg, J.M. (1993a). Simultaneous reconstruction of
object and aperture functions from multiple far-field intensity measure-
ments. J. Opt. Soc. Am. A 93, 231–239.

McCallum, B.C., Rodenburg, J.M. (1993b). An error analysis of crystalline
ptychography in the STEM mode. Ultramicroscopy 52, 85–99.

Miao, J., Charalambous, P., Kirz, J., Sayre, D. (1999). Extending the method-
ology of X-ray crystallography to allow imaging of micrometer-sized non-
crystalline specimens. Nature 400, 342–344.

Michelson, A.A. (1890). On the application of interference methods to
astronomical measurements. Phil. Mag. 30, 1–21.

Misell, D.L. (1973). A method for the solution of the phase problem in
electron microscopy. J. Phys. D 6, L6–L9.

Misell, D.L. (1978). The phase problem in electron microscopy. Adv. Opt.
Electron Microsc. 7, 185–279.

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 96
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



PTYCHOGRAPHY AND RELATED DIFFRACTIVE IMAGING METHODS183

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

Mott, N.F., Massey, E.C. (1965). The Theory of Atomic Collisions, third ed.
Oxford Univ. Press, New York.

Nellist, P.D., Rodenburg, J.M. (1994). Beyond the conventional information
limit: The relevant coherence function. Ultramicroscopy 54, 61–74.

Nellist, P.D., Rodenburg, J.M. (1998). Electron ptychography I: Experimental
demonstration beyond the conventional resolution limits. Acta Crystral-
logr. A 54, 49.

Nellist, P.D., McCallum, B.C., Rodenburg, J.M. (1995). Resolution beyond
the “information limit” in transmission electron microscopy. Nature 374,
630.

Patterson, A.L. (1934). A Fourier series method for the determination of the
components of interatomic distances in crystals. Phys. Rev. 46, 372–376.

Plamann, T., Rodenburg, J.M. (1994). Double resolution imaging with infinite
depth of focus in single lens scanning microscopy. Optik 96, 31–36.

Plamann, T., Rodenburg, J.M. (1998). Electron ptychography II: Theory of
three-dimensional scattering effects. Acta. Crystallogr. A 54, 61–73.

Rodenburg, J.M. (1988). Properties of electron microdiffraction patterns from
amorphous materials. Ultramicroscopy 25, 329–343.

Rodenburg, J.M. (1989). The phase problem, microdiffraction and
wavelength-limited resolution – A discussion. Ultramicroscopy 27, 413–
422.

Rodenburg, J.M. (2001). A simple model of holography and some enhanced
resolution methods in electron microscopy. Ultramicroscopy 87, 105–121.

Rodenburg, J.M., Bates, R.H.T. (1992). The theory of super-resolution elec-
tron microscopy via Wigner distribution deconvolution. Phil. Trans. A 339,
521–553.

Rodenburg, J.M., Faulkner, H.M.L. (2004a). High resolution imaging. UK
patent application PCT/GB2005/001464.

Rodenburg, J.M., Faulkner, H.M.L. (2004b). A phase retrieval algorithm for
shifting illumination. Appl. Phys. Lett. 85, 4795–4797.

Rodenburg, J.M., McCallum, B.C., Nellist, P.D. (1993). Experimental tests on
double resolution coherent imaging via STEM. Ultramicroscopy 48, 304–
314.

Rodenburg, J.M., Hurst, A.C., Cullis, A.G. (2007a). Transmission microscopy
without lenses for objects of unlimited size. Ultramicroscopy 107, 227–
231.

Rodenburg, J.M., Hurst, A.C., Cullis, A.G., Dobson, B.R., Pfeiffer, F., Bunk,
O., David, C., Jefimovs, K., Johnson, I. (2007b). Hard X-ray lensless
imaging of extended objects. Phys. Rev. Lett. 93. Article No. 034801.

Sayre, D. (1952). Some implications of a theorem due to Shannon. Acta.
Crystallogr. 5, 843.

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 97
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV



184 RODENBURG

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

Sayre, D. (1980). In: Schlenker, M., et al. (Eds.), Image Processing and
Coherence in Physics. In: Springer Lecture Notes in Physics, vol. 112.
Springer, Berlin, pp. 229–235.

Scherzer, O. (1936). Some defects of electron lenses. Z. Phys. 101, 593–603.
Scherzer, O. (1947). Sphärische und chromatische Korrektur von Elektronen-

Linsen. Optik 2, 114–132.
Scherzer, O. (1949). The theoretical resolution limit of the electron micro-

scope. J. Appl. Phys. 20, 20–29.
Spence, J.C.H. (1978). Practical phase determination of inner dynamical

reflections in STEM. Scan. Electron Microsc. 1, 61–68.
Spence, J.C.H., Cowley, J.M. (1978). Lattice imaging in STEM. Optik 50,

129–142.
Spence, J.C.H., Howells, M., Marks, L.D., Miao, J. (2001). Lensless imaging:

A workshop on new approaches to the phase problem for non-periodic
objects. Ultramicroscopy 90, 1–6.

Watson, J.D., Crick, F.H.C. (1953). Molecular structure of nucleic acids –
A structure for deoxyribose nucleic acid. Nature 171, 737–738.

Whittaker, E.T., Watson, G.N. (1950). A Course of Modern Analysis. Cam-
bridge Univ. Press, London and New York.

Zuo, J.M., Vartanyants, I., Gao, M., Zhang, R., Nagahara, L.A. (2003).
Atomic resolution imaging of a carbon nanotube from diffraction inten-
sities. Science 300, 1419–1421.

aiep v.2005/11/15 Prn:6/12/2007; 13:13 F:aiep1503.tex; VTEX/JOL p. 98
aid: 3 pii: S1076-5670(07)00003-1 docsubty: REV


