Simulating dynamics of electromechanical drive unit of control system with harmonic reducer
Моделирование динамики электромеханической части привода системы управления с волновым зубчатым редуктором

В.Б. Тарабарин, З.И. Тарабарина
2015 Herald of the Bauman Moscow State Technical University Series Mechanical Engineering  
Исследованы динамические процессы в электромеханической части привода системы управления с волновым зубчатым редуктором. Рассмотрена динамическая модель привода, включающая в себя двигатель постоянного тока, волновой зубчатый редуктор с дисковым генератором волн и инерционную нагрузку. Динамические параметры волнового редуктора -коэффициенты крутильной жесткости и демпфирования определены в результате эксперимента по средним значениям. Система дифференциальных уравнений, описывающая движение
more » ... ывающая движение привода, решена на компьютере для заданной частоты. Моделирование движения привода проведено для диапазона частот от 20 до 210 Гц. По результатам моделирования построены амплитудная и фазовая частотные характеристики привода. Проведено сравнение результатов моделирования с экспериментальными исследованиями, которое показало, что модель позволяет оценивать собственную частоту привода с погрешностью менее 10 %. Ключевые слова: привод системы управления, волновые зубчатые передачи, крутильная жесткость, демпфирование, амплитудные и частотные характеристики, резонансный режим. The article deals with the research into dynamics of the electromechanical drive unit of a control system with a wave gear reducer (a harmonic drive). The authors use the dynamic model of the drive including a direct current motor, a wave gear reducer with the disk generator of waves, and the inertial loading. The dynamic parameters of the wave reducer are the following ones: a torsional stiffness coefficient and a damping coefficient, which are estimated according to the averaged experimental data. The authors compute a set of the drive motion differential equations for the given frequency. The drive motion is simulated for the range of frequencies from 20 to 210 Hz. The simulation results in determining the drive's amplitude-frequency and phase-frequency characteristics. The comparison of the simulation results with the experimental data shows that the model provides estimation of the drive's natural frequency with an error, which is less than 10 %.
doi:10.18698/0236-3941-2015-5-117-127 fatcat:nyfiltembzfrxjwpzafzbqcx3m