A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit <a rel="external noopener" href="http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5309996&blobtype=pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Automatic MRI segmentation of para-pharyngeal fat pads using interactive visual feature space analysis for classification
<span title="2017-02-14">2017</span>
<i title="Springer Nature">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/65e5jydmjzhjbldqtsyy7j5wia" style="color: black;">BMC Medical Imaging</a>
</i>
Obstructive sleep apnea (OSA) is a public health problem. Detailed analysis of the para-pharyngeal fat pads can help us to understand the pathogenesis of OSA and may mediate the intervention of this sleeping disorder. A reliable and automatic para-pharyngeal fat pads segmentation technique plays a vital role in investigating larger data bases to identify the anatomic risk factors for the OSA. Methods: Our research aims to develop a context-based automatic segmentation algorithm to delineate the
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/s12880-017-0179-7">doi:10.1186/s12880-017-0179-7</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/28196476">pmid:28196476</a>
<a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC5309996/">pmcid:PMC5309996</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/uhzk5acnv5gxdk5wecrequjeqa">fatcat:uhzk5acnv5gxdk5wecrequjeqa</a>
</span>
more »
... fat pads from magnetic resonance images in a population-based study. Our segmentation pipeline involves texture analysis, connected component analysis, object-based image analysis, and supervised classification using an interactive visual analysis tool to segregate fat pads from other structures automatically. Results: We developed a fully automatic segmentation technique that does not need any user interaction to extract fat pads. Our algorithm is fast enough that we can apply it to population-based epidemiological studies that provide a large amount of data. We evaluated our approach qualitatively on thirty datasets and quantitatively against the ground truths of ten datasets resulting in an average of approximately 78% detected volume fraction and a 79% Dice coefficient, which is within the range of the inter-observer variation of manual segmentation results. Conclusion: The suggested method produces sufficiently accurate results and has potential to be applied for the study of large data to understand the pathogenesis of the OSA syndrome.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191029114937/http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC5309996&blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/ed/fd/edfd572866544c1c0dc1c7e095f4a5947e4d61de.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1186/s12880-017-0179-7">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
springer.com
</button>
</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5309996" title="pubmed link">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
pubmed.gov
</button>
</a>