The Final Log Canonical Model of the Moduli Space of Stable Curves of Genus 4

Maksym Fedorchuk
2012 International mathematics research notices  
Thesis title: Geometry of Severi varieties and the moduli space of curves. 2001-2004 S.B. in Mathematics -Massachusetts Institute of Technology, Cambridge, MA Publications and Preprints 1. M. Fedorchuk and I. Pak, Rigidity and polynomial invariants of convex polytopes, Duke Math. J., vol. 129, no. 2 (2005), 371-404. 2. M. Fedorchuk, Severi Varieties and the Moduli Space of Curves, Ph.D. thesis, Harvard University, 2008. 3. M. Fedorchuk and D. Smyth, Ample divisors on moduli spaces of pointed
more » ... ional curves, J. Algebraic Geom., vol. 20 (2011) no. 4, 599-629. 4. M. Fedorchuk, Moduli of weighted stable curves and log canonical models of M g,n , Math. Res. Lett., vol. 18 (2011) no. 4, 1-13. 5. M. Fedorchuk and D. Smyth, Alternate Compactifications of Moduli Spaces of Curves, (2010). Handbook of Moduli, editors Gavril Farkas and Ian Morrison. To be published by International Press in 2012. Available at arXiv:1012.0329 [math.AG] 6. M. Fedorchuk, Moduli spaces of hyperelliptic curves with A and D singularities, (2010). Available at arXiv:1007.4828 [math.AG] 7. J. Alper, M. Fedorchuk, and D. Smyth, Singularities with G m -action and the log minimal model program for M g , (2010). Available at arXiv:1010.3751 [math.AG] 8. M. Fedorchuk, Cyclic covering morphisms on M 0,n , (2011). Available at arXiv:1105.0655 [math.AG] 9. M. Fedorchuk, The final log canonical model of the moduli space of stable curves of genus 4, Int. Math. Res. Not. IMRN (2012) doi: 10.1093/imrn/rnr242, 23 pp.
doi:10.1093/imrn/rnr242 fatcat:lolxneyl3ncyrj5tsr477hkpkq