A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Bayesian Inference for the Weights in Logarithmic Pooling
2022
Bayesian Analysis
Combining distributions is an important issue in decision theory and Bayesian inference. Logarithmic pooling is a popular method to aggregate expert opinions by using a set of weights that reflect the reliability of each information source. However, the resulting pooled distribution depends heavily on set of weights given to each opinion/prior and thus careful consideration must be given to the choice of weights. In this paper we review and extend the statistical theory of logarithmic pooling,
doi:10.1214/22-ba1311
fatcat:hs7udpv6zzfohmesj26jpj3i7u