A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Assessing Dataset Bias in Computer Vision
[article]
2022
arXiv
pre-print
A biased dataset is a dataset that generally has attributes with an uneven class distribution. These biases have the tendency to propagate to the models that train on them, often leading to a poor performance in the minority class. In this project, we will explore the extent to which various data augmentation methods alleviate intrinsic biases within the dataset. We will apply several augmentation techniques on a sample of the UTKFace dataset, such as undersampling, geometric transformations,
arXiv:2205.01811v1
fatcat:nerm3uxlbngqfbi7fsll6zjtre