A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2017; you can also visit the original URL.
The file type is application/pdf
.
Cluster inference methods and graphical models evaluated on NCI60 microarray gene expression data
2000
At present, there is a lack of a sound methodology to infer causal gene expression relationships on a genome wide basis. We address this first by examining the behaviour of some of the latest and fastest algorithms for tree and cluster analysis, particularly hierarchical methods popular in phylogenetics. Combined with these are two novel distances based on partial, rather than full, correlations. Theoretically, partial correlations should provide better evidence for regulatory genetic links
pmid:11700594
fatcat:du3zscbimvafhh2r5wdhtojc4m