Absence of an integrated Stiles-Crawford function for coherent light

B. Vohnsen, D. Rativa
2011 Journal of Vision  
The Stiles-Crawford effect that relates visibility to pupil point is typically expressed by a Gaussian function at any given wavelength of illumination. The pupil location of the maximum and the width of this function refer, respectively, to the pointing and waveguide properties of individual cone photoreceptors. In vision simulations, the function is integrated across the pupil when estimating effective retinal images, but the validity of this approach has still not been unequivocally
more » ... quivocally confirmed. Indeed, aberrations and coherence properties may significantly alter not only the amplitude but also the phase distribution of the light at the retina in a way that differs fundamentally from that of the Maxwellian illumination configuration used when characterizing the effect. Here, we report on an experimental comparison of the traditionally determined Stiles-Crawford function and the equivalent for annular and half-annular apertures using extended highly coherent and incoherent sources. We show that an integrated Stiles-Crawford function is absent for coherent light but remains valid for highly incoherent light at the pupil. The results are supported by numerical evidence for coherent light propagation and are in agreement with a light-coupling understanding of retina photoreceptor waveguides.
doi:10.1167/11.1.19 pmid:21262913 fatcat:qpqe2tvdsfa7tnz4xqcsea3l6i