A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
SNR‐dependent drone classification using convolutional neural networks
2021
IET radar, sonar & navigation
Radar sensing offers a method of achieving 24-h all-weather drone surveillance, but in order to be maximally effective, systems need to be able to discriminate between birds and drones. This work examines drone-bird classification performance as a function of signal to noise ratio (SNR). Classification at low SNR values is necessary in order to classify drones with a small radar cross-section (RCS), as well as to facilitate reliable classification at longer ranges. To investigate the
doi:10.1049/rsn2.12161
fatcat:yygh5whn2rad7hab4rzk7cq4li