Hyperdimensional Computing-based Multimodality Emotion Recognition with Physiological Signals

En-Jui Chang, Abbas Rahimi, Luca Benini, An-Yeu Andy Wu
2019 2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)  
To interact naturally and achieve mutual sympathy between humans and machines, emotion recognition is one of the most important function to realize advanced human-computer interaction devices. Due to the high correlation between emotion and involuntary physiological changes, physiological signals are a prime candidate for emotion analysis. However, due to the need of a huge amount of training data for a high-quality machine learning model, computational complexity becomes a major bottleneck. To
more » ... overcome this issue, brain-inspired hyperdimensional (HD) computing, an energy-efficient and fast learning computational paradigm, has a high potential to achieve a balance between accuracy and the amount of necessary training data. We propose an HD Computingbased Multimodality Emotion Recognition (HDC-MER). HDC-MER maps real-valued features to binary HD vectors using a random nonlinear function, and further encodes them over time, and fuses across different modalities including GSR, ECG, and EEG. The experimental results show that, compared to the best method using the full training data, HDC-MER achieves higher classification accuracy for both valence (83.2% vs. 80.1%) and arousal (70.1% vs. 68.4%) using only 1/4 training data. HDC-MER also achieves at least 5% higher averaged accuracy compared to all the other methods in any point along the learning curve.
doi:10.1109/aicas.2019.8771622 dblp:conf/aicas/ChangRBW19 fatcat:brsbrxz3prdtlenhgpemey4vnu