Flow Characterisation of Transpiring Porous Media for Hypersonic Vehicles

Hassan Saad Ifti, Tobias Hermann, Matthew McGilvray
2018 22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference   unpublished
This paper experimentally examines the internal and external flow characteristics of porous zirconium diboride (Z r B 2 ), an Ultra-High-Temperature-Ceramic (UHTC) and a potential candidate for transpiration cooling of hypersonic vehicles. This is performed for both partially sintered material and fully densified material with cast features. The Darcy and Forchheimer permeability coefficients of these samples are determined using an ISO standard test rig. The outflow of the transpiring porous
more » ... ranspiring porous samples is investigated where no hypersonic cross-flow is involved using hot-wire anemometry and focused Schlieren visualisation. The velocity maps obtained from the hot-wire data show significant non-uniformities across the UHTC's outflow region, both at low and high differential pressures. The focused Schlieren using carbon dioxide as the injected gas reveals unsteady structures at high differential pressures as the outflowing gas interacts with the surrounding air.
doi:10.2514/6.2018-5167 fatcat:y33kllgxgzapvcxmk3ug4uzhze