Rapid mRNA degradation mediated by the c-fos 3' AU-rich element and that mediated by the granulocyte-macrophage colony-stimulating factor 3' AU-rich element occur through similar polysome-associated mechanisms

E Winstall, M Gamache, V Raymond
1995 Molecular and Cellular Biology  
The different 3' noncoding AU-rich elements (ARE) that mediate the degradation of many short-lived mRNAs may function through distinct decay pathways; translation-dependent and -independent mechanisms have been proposed. To investigate the cotranslational model, we designed an expression system that exploits the properties of the ferritin iron-responsive element to shuttle chimeric mRNAs from ribonucleoproteins to polyribosomes. The iron-responsive element was introduced in the 5' untranslated
more » ... egions of alpha-globin mRNAs that harbored in their 3' untranslated regions either the c-fos ARE or the granulocyte-macrophage colony-stimulating factor ARE as prototypes of the different ARE subsets. The cytoplasmic location of the transcripts was controlled by intracellular iron availability and monitored by polysomal profile analysis. We report that these two mRNA subsets behaved identically in this system. Iron deprivation by desferrioxamine treatment stabilized both transcripts by sequestering them away from polyribosomes. Sequential treatments with desferrioxamine, followed by hemin to concentrate the mRNAs in the ribonucleoprotein pool prior to translation, showed that rapid degradation occurred only upon redistribution of the transcripts to polyribosomes. Deletion of a critical cytosine in the iron-responsive element abolished targeted sequestration and restored high-level constitutive mRNA instability. These observations demonstrate that the c-fos and granulocyte-macrophage colony-stimulating factor ARE subsets mediate selective mRNA degradation through similar polysome-associated mechanisms coupled with ongoing translation.
doi:10.1128/mcb.15.7.3796 pmid:7540719 pmcid:PMC230618 fatcat:p42cirmec5dn3ouna6vtpvhqvq