A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2019; you can also visit the original URL.
The file type is `application/pdf`

.

##
###
Oscillation of a Class of Third Order Generalized Functional Difference Equation
[post]

2018
unpublished

The authors intend to establish new oscillation criteria for a class of generalized third order functional difference equation of the form \begin{equation}{\label{eq01}} \Delta_{\ell}\left(a_2(n)\left[\Delta_{\ell}\left(a_1(n)\left[\Delta_{\ell}z(n)\right]^{\beta_1}\right)\right]^{\beta_2}\right)+q(n)f(x(g(n)))=0, ~~n\geq n_0, \end{equation} where $z(n)=x(n)+p(n)x(\tau(n))$. We also present sufficient conditions for the solutions to converges to zero. Suitable examples are presented to validate

doi:10.20944/preprints201812.0349.v1
fatcat:wzgx6pyolfe6llzqdqfxnckfge