A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Combating Label Noise in Image Data Using MultiNET Flexible Confident Learning
2022
Applied Sciences
Deep neural networks (DNNs) have been used successfully for many image classification problems. One of the most important factors that determines the final efficiency of a DNN is the correct construction of the training set. Erroneously labeled training images can degrade the final accuracy and additionally lead to unpredictable model behavior, reducing reliability. In this paper, we propose MultiNET, a novel method for the automatic detection of noisy labels within image datasets. MultiNET is
doi:10.3390/app12146842
fatcat:fnpkhzsykne3jjvh4x5zmif7z4