Hardware-Based Linear Program Decoding with the Alternating Direction Method of Multipliers [article]

Mitchell Wasson, Mario Milicevic, Stark C. Draper, Glenn Gulak
2016 arXiv   pre-print
We present a hardware-based implementation of Linear Program (LP) decoding for binary linear codes. LP decoding frames error-correction as an optimization problem. In contrast, variants of Belief Propagation (BP) decoding frame error-correction as a problem of graphical inference. LP decoding has several advantages over BP-based methods, including convergence guarantees and better error-rate performance in high-reliability channels. The latter makes LP decoding attractive for optical transport
more » ... nd storage applications. However, LP decoding, when implemented with general solvers, does not scale to large blocklengths and is not suitable for a parallelized implementation in hardware. It has been recently shown that the Alternating Direction Method of Multipliers (ADMM) can be applied to decompose the LP decoding problem. The result is a message-passing algorithm with a structure very similar to BP. We present new intuition for this decoding algorithm as well as for its major computational primitive: projection onto the parity polytope. Furthermore, we present results for a fixed-point Verilog implementation of ADMM-LP decoding. This implementation targets a Field-Programmable Gate Array (FPGA) platform to evaluate error-rate performance and estimate resource usage. We show that Frame Error Rate (FER) performance well within 0.5dB of double-precision implementations is possible with 10-bit messages. Finally, we outline a number of research opportunities that should be explored en-route to the realization of an Application Specific Integrated Circuit (ASIC) implementation capable of gigabit per second throughput.
arXiv:1611.05975v1 fatcat:bl6bbnsan5fv7i5obx3ro7vnii