Robust Adaptive Observer Design for Uncertain Systems With Bounded Disturbances

Vahram Stepanyan, Naira Hovakimyan
2007 IEEE Transactions on Neural Networks  
This paper presents a robust adaptive observer design methodology for a class of uncertain nonlinear systems in the presence of time-varying unknown parameters and non-vanishing disturbances. Using the universal approximation property of radial basis function neural networks and the adaptive bounding technique the developed observer achieves asymptotic convergence of state estimation error to zero, while ensuring boundedness of parameter errors. A comparative simulation study is presented by the end.
doi:10.1109/tnn.2007.895837 pmid:18220188 fatcat:raosk7ypmbasppfljxu4h423ry