A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Augmentic Compositional Models for Knowledge Base Completion Using Gradient Representations
2019
Neural models of Knowledge Base data have typically employed compositional representations of graph objects: entity and relation embeddings are systematically combined to evaluate the truth of a candidate Knowedge Base entry. Using a model inspired by Harmonic Grammar, we propose to tokenize triplet embeddings by subjecting them to a process of optimization with respect to learned wellformedness conditions on Knowledge Base triplets. The resulting model, known as Gradient Graphs, leads to
doi:10.7275/8et8-qd83
fatcat:fobjxseewvbs3pvf25gkbw4pra