Separability criterion for separate quantum systems

M. G. Raymer, A. C. Funk, B. C. Sanders, H. de Guise
2003 Physical Review A. Atomic, Molecular, and Optical Physics  
Entanglement, or quantum inseparability, is a crucial resource in quantum information applications, and therefore the experimental generation of separated yet entangled systems is of paramount importance. Experimental demonstrations of inseparability with light are not uncommon, but such demonstrations in physically well-separated massive systems, such as distinct gases of atoms, are new and present significant challenges and opportunities. Rigorous theoretical criteria are needed for
more » ... eeded for demonstrating that given data are sufficient to confirm entanglement. Such criteria for experimental data have been derived for the case of continuous-variable systems obeying the Heisenberg-Weyl (position- momentum) commutator. To address the question of experimental verification more generally, we develop a sufficiency criterion for arbitrary states of two arbitrary systems. When applied to the recent study by Julsgaard, Kozhekin, and Polzik [Nature 413, 400 - 403 (2001)] of spin-state entanglement of two separate, macroscopic samples of atoms, our new criterion confirms the presence of spin entanglement.
doi:10.1103/physreva.67.052104 fatcat:ybppfpggt5hfbofhb3jkcdbqje