SCIΦ: Single-cell mutation identification via phylogenetic inference [article]

Jochen Singer, Jack Kuipers, Katharina Jahn, Niko Beerenwinkel
2018 bioRxiv   pre-print
Understanding the evolution of cancer is important for the development of appropriate cancer therapies. The task is challenging because tumors evolve as heterogeneous cell populations with an unknown number of genetically distinct subclones of varying frequencies. Conventional approaches based on bulk sequencing are limited in addressing this challenge as clones cannot be observed directly. Single-cell sequencing holds the promise of resolving the heterogeneity of tumors; however, it has its
more » ... challenges including elevated error rates, allelic dropout, and uneven coverage. Here, we develop a new approach to mutation detection in individual tumor cells by leveraging the evolutionary relationship among cells. Our method, called SCIΦ, jointly calls mutations in individual cells and estimates the tumor phylogeny among these cells. Employing a Markov Chain Monte Carlo scheme we robustly account for the various sources of noise in single-cell sequencing data. Our approach enables us to reliably call mutations in each single cell even in experiments with high dropout rates and missing data. We show that SCIΦ outperforms existing methods on simulated data and applied it to different real-world datasets, namely a whole exome breast cancer as well as a panel acute lymphoblastic leukemia dataset. Availability: https://github.com/cbg-ethz/SCIPhI
doi:10.1101/290908 fatcat:gc7c5lskzvccplvksq5dtyqey4