Error-Correcting Data Structures

Victor Chen, Elena Grigorescu, Ronald de Wolf
2013 SIAM journal on computing (Print)  
We study data structures in the presence of adversarial noise. We want to encode a given object in a succinct data structure that enables us to efficiently answer specific queries about the object, even if the data structure has been corrupted by a constant fraction of errors. This model is the common generalization of (static) data structures and locally decodable errorcorrecting codes. The main issue is the tradeoff between the space used by the data structure and the time (number of probes)
more » ... eeded to answer a query about the encoded object. We prove a number of upper and lower bounds on various natural error-correcting data structure problems. In particular, we show that the optimal length of error-correcting data structures for the Membership problem (where we want to store subsets of size s from a universe of size n) is closely related to the optimal length of locally decodable codes for s-bit strings.
doi:10.1137/110834949 fatcat:4dklcydauzabbfzqjjxtjqzcdm