Topologically Transitive and Mixing Properties of Set-Valued Dynamical Systems

Koon Sang Wong, Zabidin Salleh, Victor Kovtunenko
2021 Abstract and Applied Analysis  
We introduce and study two properties of dynamical systems: topologically transitive and topologically mixing under the set-valued setting. We prove some implications of these two properties for set-valued functions and generalize some results from a single-valued case to a set-valued case. We also show that both properties of set-valued dynamical systems are equivalence for any compact intervals.
doi:10.1155/2021/5541105 fatcat:c6cmafuoerfejavxchjvact5dy