The role of the mammalian Y chromosome in spermatogenesis

P S Burgoyne
1987 Development  
All aspects of the mammalian male phenotype are due either directly or indirectly to Y-chromosome activity. This review summarizes what is known of the role of the Y in male germ cell differentiation in the mouse. The initial diversion of germ cells to the male pathway in fetal life (that is the formation of amitotic T1-prospermatogonia rather than meiotic oocytes) is an indirect effect of the Y: the Y-chromosomal testis-determining gene (Tdy) acts to create a testis and the testicular
more » ... testicular environment causes the germ cells to follow the male pathway. XX and XO germ cells can therefore form T1-prospermatogonia, but the extra X of XX prospermatogonia in some way causes their death perinatally. The first direct effect of the Y in the germ line occurs at the initiation of the spermatogenic cycles (approx. 1 week after birth) when a Y-chromosomal gene (Spy) is needed for normal spermatogonial survival and progression to meiosis. Spy is present in the Y-derived Sxr fragment so XOSxr germ cells enter meiosis normally. An Sxr derivative, Sxr', which has lost the capacity to produce H-Y antigen, has also lost the Spy function, raising the possibility that H-Y antigen is the mediator of Spy activity. The Y is next required in the male germ line during meiotic prophase, when it provides a pairing partner for the X chromosome. If the X (or, indeed, the Y when present) remains unpaired, there are severe spermatogenic losses and the second meiotic division is frequently omitted, leading to the formation of diploid spermatids.(ABSTRACT TRUNCATED AT 250 WORDS)
pmid:3503711 fatcat:2gogkm3nvre7jluzpzwodnl2om