Investigation of Bioaccumulation Capacity of Barley for Soil Lead and Chromium under Drought Stress Conditions

M. Madahinasab, M. Mousavi nik, S.A. Ghanbari, A.R. Sirousmehr, Sh. Kouhestani
2021 Majallah-i āb va Khāk  
The use of sewage sludge, which is mixed locally with poultry waste and is available at a relatively low cost, improves the circulation of nutrients and organic matter in the soil, reduces the concentration of CO2 in the atmosphere, and increases the level of soil organic carbon. Fertilization with this method is of particular importance in soils of arid and semi-arid regions that face erosion and organic matter reduction. However, there are concerns about the presence of essential and
more » ... ry heavy metals such as Cd, Cr, Cu, Ni, Pb, and Zn that enter the environment from domestic, light industrial, commercial and municipal wastewater sources and can lead to soil contamination and eventually enters the food chain through absorption, transport, and accumulation in agricultural and non-agricultural products and has threatened human and animal health. Phytoremediation is the cleaning up of polluted terrestrial areas and aquatic sites from heavy metal and organic contaminants by green plants. An appropriate plant for phytoremediation should ideally have a high ability to translocate contaminants into the plant shoot. However, the toxicity of the remains of these plants has become a severe problem for human health. Iran is an arid and semi-arid country and many soils face the problem of using animal manure sources with sewage sludge and the possibility of contamination with heavy metals. Farmers cultivate the barley plant (Hordeum vulgare L.) in these areas widely, and it has a significant role in the food chain of livestock and humans. Therefore, in this study, we evaluated the barley plant in terms of lead and chromium accumulation by increasing drought levels in the field.Materials and Methods: It was a two-year field experiment with three irrigation levels (irrigation per 100 (control), 75 and 50% of field capacity). The amount of chromium and lead in soil and plant samples was measured using atomic spectroscopy with flame mode after extraction by digestion in acid. We used bio-concentration coef [...]
doi:10.22067/jsw.2021.69271.1039 doaj:fb629b24b5634c72a863157628097214 fatcat:63kplgkhf5hu7lvlwiwtunehki