Adiponectin in Relation to Coronary Plaque Characteristics on Radiofrequency Intravascular Ultrasound and Cardiovascular Outcome

Bárbara Campos Abreu Marino, Nermina Buljubasic, Martijn Akkerhuis, Jin M. Cheng, Hector M. Garcia-Garcia, Evelyn Regar, Robert-Jan van Geuns, Patrick W. Serruys, Eric Boersma, Isabella Kardys
2018 Arquivos Brasileiros de Cardiologia  
BACKGROUND Prospective data on the associations of adiponectin with in-vivo measurements of degree, phenotype and vulnerability of coronary atherosclerosis are currently lacking. OBJEC-TIVE To investigate the association of plasma adiponectin with virtual histology intravascular ultrasound (VH-IVUS)-derived measures of atherosclerosis and with major adverse cardiac events (MACE) in patients with established coronary artery disease. METHODS In 2008-2011, VH-IVUS of a non-culprit non-stenotic
more » ... nary segment was performed in 581 patients undergoing coronary angiography for acute coronary syndrome (ACS, n = 318) or stable angina pectoris (SAP, n = 263) from the atherosclerosisintravascular ultrasound (ATHEROREMO-IVUS) study. Blood was sampled prior to coronary angiography. Coronary plaque burden, tissue composition, high-risk lesions, including VH-IVUS-derived thin-cap fibroatheroma (TCFA), were assessed. All-cause mortality, ACS, unplanned coronary revascularization were registered during a 1-year-follow-up. All statistical tests were two-tailed and p-values < 0.05 were considered statistically significant. RESULTS In the full cohort, adiponectin levels were not associated with plaque burden, nor with the various VH-tissue types. In SAP patients, adiponectin levels (median[IQR]: 2.9(1.9-3.9) µg/mL) were positively associated with VH-IVUS derived TCFA lesions, (OR 95%CI]: 1.78[1.06-3.00], p = 0.030), and inversely associated with lesions with minimal luminal area (MLA) 4.0 mm2 (OR[95%CI]: 0.55[0.32-0.92], p = 0.025). In ACS patients, adiponectin levels (median[IQR]: 2.9 [1.8-4.1] µg/mL)were not associated with plaque burden, nor with tissue components. Positive association of adiponectin with death was present in the full cohort (HR[95%CI]: 2.52[1.02-6.23], p = 0.045) and (borderline) in SAP patients (HR[95%CI]: 8.48[0.92-78.0], p = 0.058). In ACS patients, this association lost statistical significance after multivariable adjustment (HR[95%CI]: 1.87[0.67-5.19], p = 0.23). CONCLUSION In the full cohort, adiponectin levels were associated with death but not with VH-IVUS atherosclerosis measures. In SAP patients, adiponectin levels were associated with VH-IVUS-derived TCFA lesions. Altogether, substantial role for adiponectin in plaque vulnerability remains unconfirmed. Abstract Background: Prospective data on the associations of adiponectin with in-vivo measurements of degree, phenotype and vulnerability of coronary atherosclerosis are currently lacking. Objective: To investigate the association of plasma adiponectin with virtual histology intravascular ultrasound (VH-IVUS)derived measures of atherosclerosis and with major adverse cardiac events (MACE) in patients with established coronary artery disease. Methods: In 2008-2011, VH-IVUS of a non-culprit non-stenotic coronary segment was performed in 581 patients undergoing coronary angiography for acute coronary syndrome (ACS, n = 318) or stable angina pectoris (SAP, n = 263) from the atherosclerosis-intravascular ultrasound (ATHEROREMO-IVUS) study. Blood was sampled prior to coronary angiography. Coronary plaque burden, tissue composition, high-risk lesions, including VH-IVUS-derived thin-cap fibroatheroma (TCFA), were assessed. All-cause mortality, ACS, unplanned coronary revascularization were registered during a 1-year-follow-up. All statistical tests were two-tailed and p-values < 0.05 were considered statistically significant. Results : In the full cohort, adiponectin levels were not associated with plaque burden, nor with the various VH-tissue types. In SAP patients, adiponectin levels (median[IQR]: 2.9(1.9-3.9) μg/mL) were positively associated with VH-IVUS derived TCFA lesions, (OR[95%CI]: 1.78[1.06-3.00], p = 0.030), and inversely associated with lesions with minimal luminal area (MLA) ≤ 4.0 mm 2 (OR[95%CI]: 0.55[0.32-0.92], p = 0.025). In ACS patients, adiponectin levels (median[IQR]: 2.9 [1.8-4.1] μg/mL)were not associated with plaque burden, nor with tissue components. Positive association of adiponectin with death was present in the full cohort (HR[95%CI]: 2.52[1.02-6.23], p = 0.045) and (borderline) in SAP patients (HR[95%CI]: 8.48[0.92-78.0], p = 0.058). In ACS patients, this association lost statistical significance after multivariable adjustment (HR[95%CI]: 1.87[0.67-5.19], p = 0.23). Conclusion: In the full cohort, adiponectin levels were associated with death but not with VH-IVUS atherosclerosis measures. In SAP patients, adiponectin levels were associated with VH-IVUS-derived TCFA lesions. Altogether, substantial role for adiponectin in plaque vulnerability remains unconfirmed. (Arq Bras Cardiol. 2018; 111(3):345-353)
doi:10.5935/abc.20180172 fatcat:c6qbtz3fcbazvet5ywzlytikyi