A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Classification of insulators using neural network based on computer vision
2021
IET Generation, Transmission & Distribution
Insulators of the electrical power grid are usually installed outdoors, so they suffer from environmental stresses, such as the presence of contamination. Contamination can increase surface conductivity, which can lead to system failures, reducing the reliability of the network. The identification of insulators that have their properties compromised is important so that there are no discharges through its insulating body. To perform the classification of contaminated insulators, this paper
doi:10.1049/gtd2.12353
fatcat:tlae4w3ymnfynn2zbvicoxqcvu