Redesigning photosynthesis to sustainably meet global food and bioenergy demand

Donald R. Ort, Sabeeha S. Merchant, Jean Alric, Alice Barkan, Robert E. Blankenship, Ralph Bock, Roberta Croce, Maureen R. Hanson, Julian M. Hibberd, Stephen P. Long, Thomas A. Moore, James Moroney (+13 others)
2015 Proceedings of the National Academy of Sciences of the United States of America  
The world's crop productivity is stagnating whereas population growth, rising affluence, and mandates for biofuels put increasing demands on agriculture. Meanwhile, demand for increasing cropland competes with equally crucial global sustainability and environmental protection needs. Addressing this looming agricultural crisis will be one of our greatest scientific challenges in the coming decades, and success will require substantial improvements at many levels. We assert that increasing the
more » ... iciency and productivity of photosynthesis in crop plants will be essential if this grand challenge is to be met. Here, we explore an array of prospective redesigns of plant systems at various scales, all aimed at increasing crop yields through improved photosynthetic efficiency and performance. Prospects range from straightforward alterations, already supported by preliminary evidence of feasibility, to substantial redesigns that are currently only conceptual, but that may be enabled by new developments in synthetic biology. Although some proposed redesigns are certain to face obstacles that will require alternate routes, the efforts should lead to new discoveries and technical advances with important impacts on the global problem of crop productivity and bioenergy production. light capture/conversion | carbon capture/conversion | smart canopy | enabling plant biotechnology tools | sustainable crop production Increasing demands for global food production over the next several decades portend a huge burden on the world's shrinking farmlands. Increasing global affluence, population growth, and demands for a bioeconomy (including livestock feed, bioenergy, chemical feedstocks, and biopharmaceuticals) will all require increased agricultural productivity, perhaps by as much as 60-120% over 2005 levels (e.g., refs. 1 and 2), putting increased productivity on a collision course with environmental and sustainability goals (3). The 45 y from 1960 to 2005 saw global food production grow ∼160%, mostly (135%) by improved production on
doi:10.1073/pnas.1424031112 pmid:26124102 pmcid:PMC4507207 fatcat:a5ik244g2ngivhavqm5iayzoly