Perfect matchings of trimmed Aztec rectangles

Tri Lai
2017 unpublished
We consider several new families of subgraphs of the square grid whose matchings are enumerated by powers of several small prime numbers: 2, 3, 5, and 11. Our graphs are obtained by trimming two opposite corners of an Aztec rectangle. The result yields a proof of a conjecture posed by Ciucu. In addition, we reveal a hidden connection between our graphs and the hexagonal dungeons introduced by Blum.