Journey of Migrating Millions of Queries on The Cloud [article]

Taro L. Saito, Naoki Takezoe, Yukihiro Okada, Takako Shimamoto, Dongmin Yu, Suprith Chandrashekharachar, Kai Sasaki, Shohei Okumiya, Yan Wang, Takashi Kurihara, Ryu Kobayashi, Keisuke Suzuki (+2 others)
2022 pre-print
Treasure Data is processing millions of distributed SQL queries every day on the cloud. Upgrading the query engine service at this scale is challenging because we need to migrate all of the production queries of the customers to a new version while preserving the correctness and performance of the data processing pipelines. To ensure the quality of the query engines, we utilize our query logs to build customer-specific benchmarks and replay these queries with real customer data in a secure
more » ... roduction environment. To simulate millions of queries, we need effective minimization of test query sets and better reporting of the simulation results to proactively find incompatible changes and performance regression of the new version. This paper describes the overall design of our system and shares various challenges in maintaining the quality of the query engine service on the cloud.
doi:10.1145/3531348.3532177 arXiv:2205.08664v1 fatcat:4d4zvyd6izhtpnft2hcakooxoy