Automated prostate cancer detection usingT2-weighted and high-b-value diffusion-weighted magnetic resonance imaging

Jin Tae Kwak, Sheng Xu, Bradford J. Wood, Baris Turkbey, Peter L. Choyke, Peter A. Pinto, Shijun Wang, Ronald M. Summers
<span title="2015-04-16">2015</span> <i title="Wiley"> <a target="_blank" rel="noopener" href="" style="color: black;">Medical Physics (Lancaster)</a> </i> &nbsp;
Purpose: The authors propose a computer-aided diagnosis (CAD) system for prostate cancer to aid in improving the accuracy, reproducibility, and standardization of multiparametric magnetic resonance imaging (MRI). Methods: The proposed system utilizes two MRI sequences [T2-weighted MRI and high-b-value (b = 2000 s/mm 2 ) diffusion-weighted imaging (DWI)] and texture features based on local binary patterns. A three-stage feature selection method is employed to provide the most discriminative
more &raquo; ... res. The authors included a total of 244 patients. Training the CAD system on 108 patients (78 MR-positive prostate cancers and 105 benign MR-positive lesions), two validation studies were retrospectively performed on 136 patients (68 MR-positive prostate cancers, 111 benign MR-positive lesions, and 117 MR-negative benign lesions). Results: In distinguishing cancer from MR-positive benign lesions, an area under receiver operating characteristic curve (AUC) of 0.83 [95% confidence interval (CI): 0.76-0.89] was achieved. For cancer vs MR-positive or MR-negative benign lesions, the authors obtained an AUC of 0.89 AUC (95% CI: 0.84-0.93). The performance of the CAD system was not dependent on the specific regions of the prostate, e.g., a peripheral zone or transition zone. Moreover, the CAD system outperformed other combinations of MRI sequences: T2W MRI, high-b-value DWI, and the standard apparent diffusion coefficient (ADC) map of DWI. Conclusions: The novel CAD system is able to detect the discriminative texture features for cancer detection and localization and is a promising tool for improving the quality and efficiency of prostate cancer diagnosis. [http://dx.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="">doi:10.1118/1.4918318</a> <a target="_blank" rel="external noopener" href="">pmid:25979032</a> <a target="_blank" rel="external noopener" href="">pmcid:PMC4401803</a> <a target="_blank" rel="external noopener" href="">fatcat:tshectdd3fddbejtbyetse5w2q</a> </span>
<a target="_blank" rel="noopener" href=";blobtype=pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href=""> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> Publisher / </button> </a> <a target="_blank" rel="external noopener" href="" title="pubmed link"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> </button> </a>