### Bounds on the k-domination number of a graph

Ermelinda DeLaViña, Wayne Goddard, Michael A. Henning, Ryan Pepper, Emil R. Vaughan
<span title="">2011</span> <i title="Elsevier BV"> <a target="_blank" rel="noopener" href="https://fatcat.wiki/container/deqidnohqjdu7gsln5vdm6obre" style="color: black;">Applied Mathematics Letters</a> </i> &nbsp;
The k-domination number of a graph is the cardinality of a smallest set of vertices such that every vertex not in the set is adjacent to at least k vertices of the set. We prove two bounds on the k-domination number of a graph, inspired by two conjectures of the computer program Graffiti.pc. In particular, we show that for any graph with minimum degree at least 2k − 1, the k-domination number is at most the matching number.
<span class="external-identifiers"> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.aml.2011.01.013">doi:10.1016/j.aml.2011.01.013</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/gkudp7yb75gvbim6yuesmvkjge">fatcat:gkudp7yb75gvbim6yuesmvkjge</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20170927180514/http://publisher-connector.core.ac.uk/resourcesync/data/elsevier/pdf/57a/aHR0cDovL2FwaS5lbHNldmllci5jb20vY29udGVudC9hcnRpY2xlL3BpaS9zMDg5Mzk2NTkxMTAwMDE4OA%3D%3D.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/04/f9/04f91de115cd373c438fa8eccb9040ec02d1eb49.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.aml.2011.01.013"> <button class="ui left aligned compact blue labeled icon button serp-button"> <i class="external alternate icon"></i> elsevier.com </button> </a>