A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2022; you can also visit the original URL.
The file type is application/pdf
.
Partial Atrous Cascade R-CNN
2022
Electronics
Deep-learning-based segmentation methods have achieved excellent results. As two main tasks in computer vision, instance segmentation and semantic segmentation are closely related and mutually beneficial. Spatial context information from the semantic features can also improve the accuracy of instance segmentation. Inspired by this, we propose a novel instance segmentation framework named partial atrous cascade R-CNN (PAC), which effectively improves the accuracy of the segmentation boundary.
doi:10.3390/electronics11081241
fatcat:utknn666dfdnrp726itpr6erve