Comparing remotely sensed observations of clouds and aerosols in the Southern Ocean with climate model simulations

Peter Kuma, Adrian McDonald, Olaf Morgenstern
2020 Zenodo  
Southern Ocean (SO) shortwave (SW) radiation biases are a common problem in contemporary general circulation models (GCMs), with most models exhibiting a tendency to absorb too much incoming SW radiation. These biases have been attributed to deficiencies in the representation of clouds during the austral summer months, either due to cloud cover or cloud albedo being too low. They affect simulation of New Zealand (NZ) and global climate in GCMs due to excessive heating of the sea surface and the
more » ... effect on large-scale circulation. Therefore, improvement of GCMs is necessary for accurate prediction of future NZ and global climate. Currently the New Zealand Earth System Model (NZESM), based on the UK Hadley Centre Coupled Model version 3 (HadGEM3), is developed at the National Institute of Water and Atmospheric Research (NIWA) and the University of Canterbury. We performed ship-based lidar, radar, radiosonde and weather observations on two SO voyages and processed data from multiple past SO voyages. We used the observations and satellite measurements for evaluation of NZESM and contrasting with the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) to better understand the source of the problem. Due to the nature of lidar observations (the laser signal is quickly attenuated by clouds) they cannot be used for 1:1 comparison with a model without using a lidar simulator, which performs atmospheric radiative transfer calculations of the laser signal. We modify an existing satellite lidar simulator present in the Cloud Feedback Model Intercomparison Project (CFMIP) Observational Simulator Package (COSP) for use with the ground-based lidars used in our observations by modifying the geometry of the radiative transfer calculations, Mie and Rayleigh scattering of the laser signal. We document and make the modified lidar simulator available to the scientific community as part of a newly-developed lidar processing tool called the Automatic Lidar and Ceilometer Framework (ALCF), which enables unb [...]
doi:10.5281/zenodo.3865850 fatcat:55x3hexvnra2vf2cms4zijlhxy