A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
Multi-Granularity Representations of Dialog
[article]
2019
arXiv
pre-print
Neural models of dialog rely on generalized latent representations of language. This paper introduces a novel training procedure which explicitly learns multiple representations of language at several levels of granularity. The multi-granularity training algorithm modifies the mechanism by which negative candidate responses are sampled in order to control the granularity of learned latent representations. Strong performance gains are observed on the next utterance retrieval task using both the
arXiv:1908.09890v1
fatcat:fm2pakzxkbcirfpeo5lf6iujiq