Customizable Fault Tolerance forWide-Area Replication

Yair Amir, Brian Coan, Jonathan Kirsch, John Lane
2007 Symposium on Reliable Distributed Systems. Proceedings  
Constructing logical machines out of collections of physical machines is a well-known technique for improving the robustness and fault tolerance of distributed systems. We present a new, scalable replication architecture, built upon logical machines specifically designed to perform well in wide-area systems spanning multiple sites. The physical machines in each site implement a logical machine by running a local state machine replication protocol, and a wide-area replication protocol runs among
more » ... the logical machines. Implementing logical machines via the state machine approach affords free substitution of the fault tolerance method used in each site and in the wide-area replication protocol, allowing one to balance performance and fault tolerance based on perceived risk. We present a new Byzantine fault-tolerant protocol that establishes a reliable virtual communication link between logical machines. Our communication protocol is efficient (a necessity in wide-area environments), avoiding the need for redundant message sending during normal-case operation and allowing a logical machine to consume approximately the same wide-area bandwidth as a single physical machine. This dramatically improves the wide-area performance of our system compared to existing logical machine based approaches. We implemented a prototype system and compare its performance and fault tolerance to existing solutions.
doi:10.1109/srds.2007.4365685 fatcat:h6qfb4iev5afvjla4a76ww4ofa