Two-dimensional Kolmogorov complexity and an empirical validation of the Coding theorem method by compressibility

Hector Zenil, Fernando Soler-Toscano, Jean-Paul Delahaye, Nicolas Gauvrit
2015 PeerJ Computer Science  
We propose a measure based upon the fundamental theoretical concept in algorithmic information theory that provides a natural approach to the problem of evaluatingn-dimensional complexity by using ann-dimensional deterministic Turing machine. The technique is interesting because it provides a natural algorithmic process for symmetry breaking generating complexn-dimensional structures from perfectly symmetric and fully deterministic computational rules producing a distribution of patterns as
more » ... of patterns as described by algorithmic probability. Algorithmic probability also elegantly connects the frequency of occurrence of a pattern with its algorithmic complexity, hence effectively providing estimations to the complexity of the generated patterns. Experiments to validate estimations of algorithmic complexity based on these concepts are presented, showing that the measure is stable in the face of some changes in computational formalism and that results are in agreement with the results obtained using lossless compression algorithms when both methods overlap in their range of applicability. We then use the output frequency of the set of 2-dimensional Turing machines to classify the algorithmic complexity of the space-time evolutions of Elementary Cellular Automata.
doi:10.7717/peerj-cs.23 fatcat:dcsapkfadnhshney46df5wpzmi