A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2023; you can also visit the original URL.
The file type is application/pdf
.
Failing parametrizations: what can go wrong when approximating spectral submanifolds
2023
Invariant manifolds provide useful insights into the behavior of nonlinear dynamical systems. For conservative vibration problems, Lyapunov subcenter manifolds constitute the nonlinear extension of spectral subspaces consisting of one or more modes of the linearized system. Conversely, spectral submanifolds represent the spectral dynamics of non-conservative, nonlinear problems. While finding global invariant manifolds remains a challenge, approximations thereof can be simple to acquire and
doi:10.5445/ir/1000155071
fatcat:qm3a5db4lffybizhgeotempvea