Deep learning in generating radiology reports: A survey

Maram Mahmoud A. Monshi, Josiah Poon, Vera Chung
2020 Artificial Intelligence in Medicine  
Substantial progress has been made towards implementing automated radiology reporting models based on deep learning (DL). This is due to the introduction of large medical text/image datasets. Generating radiology coherent paragraphs that do more than traditional medical image annotation, or single sentence-based description, has been the subject of recent academic attention. This presents a more practical and challenging application and moves towards bridging visual medical features and
more » ... ist text. So far, the most common approach has been to utilize publicly available datasets and develop DL models that integrate convolutional neural networks (CNN) for image analysis alongside recurrent neural networks (RNN) for natural language processing (NLP) and natural language generation (NLG). This is an area of research that we anticipate will grow in the near future. We focus our investigation on the following critical challenges: understanding radiology text/image structures and datasets, applying DL algorithms (mainly CNN and RNN), generating radiology text, and improving existing DL based models and evaluation metrics. Lastly, we include a critical discussion and future research recommendations. This survey will be useful for researchers interested in DL, particularly those interested in applying DL to radiology reporting.
doi:10.1016/j.artmed.2020.101878 pmid:32425358 pmcid:PMC7227610 fatcat:ccy2g2rh2zavdjjvvjlv7poxau