Learning for Biomedical Information Extraction: Methodological Review of Recent Advances [article]

Feifan Liu, Jinying Chen, Abhyuday Jagannatha, Hong Yu
<span title="2016-06-26">2016</span> <i > arXiv </i> &nbsp; <span class="release-stage" >pre-print</span>
Biomedical information extraction (BioIE) is important to many applications, including clinical decision support, integrative biology, and pharmacovigilance, and therefore it has been an active research. Unlike existing reviews covering a holistic view on BioIE, this review focuses on mainly recent advances in learning based approaches, by systematically summarizing them into different aspects of methodological development. In addition, we dive into open information extraction and deep
more &raquo; ... two emerging and influential techniques and envision next generation of BioIE.
<span class="external-identifiers"> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1606.07993v1">arXiv:1606.07993v1</a> <a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/7d5om7zxxzhoviiriasrfwg3xi">fatcat:7d5om7zxxzhoviiriasrfwg3xi</a> </span>
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20191024193732/https://arxiv.org/pdf/1606.07993v1.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext"> <button class="ui simple right pointing dropdown compact black labeled icon button serp-button"> <i class="icon ia-icon"></i> Web Archive [PDF] <div class="menu fulltext-thumbnail"> <img src="https://blobs.fatcat.wiki/thumbnail/pdf/e8/f7/e8f7e63ef52e6c19a0933cf7d920fcc2ad60eab7.180px.jpg" alt="fulltext thumbnail" loading="lazy"> </div> </button> </a> <a target="_blank" rel="external noopener" href="https://arxiv.org/abs/1606.07993v1" title="arxiv.org access"> <button class="ui compact blue labeled icon button serp-button"> <i class="file alternate outline icon"></i> arxiv.org </button> </a>