Natural selection can favor ratchet robustness over mutational robustness [article]

Yinghong Lan, Aaron Trout, Daniel M Weinreich, C Scott Wylie
2017 bioRxiv   pre-print
The vast majority of fitness-affecting mutations are deleterious. How natural populations evolve to cope is a question of fundamental interest. Previous studies have reported the evolution of mutational robustness, that is, natural selection favoring populations with less deleterious mutations. By definition, mutational robustness provides a short-term fitness advantage. However, this overlooks the fact that mutational robustness decreases finite asexual populations' ability to purge recurrent
more » ... eleterious mutations. Thus, mutational robustness also results in higher risk of long-term extinction by Muller's ratchet. Here, we explore the tension between short- and long- term response to deleterious mutations. We first show that populations can resist the ratchet if either the selection coefficient or the ratio of beneficial to deleterious mutations increases as fitness declines. We designate these properties as ratchet robustness, which fundamentally reflects a negative feedback between mutation rate and the tendency to accumulate more mutations. We also find in simulations that populations can evolve ratchet robustness when challenged by deleterious mutations. We conclude that mutational robustness cannot be selected for in the long term, but it can be favored in the short-term, purely because of temporary fitness advantage. We also discuss other potential causes of mutational robustness in nature.
doi:10.1101/121087 fatcat:dqcucyxfy5egxg3gap2cikpakm