A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
A Localized Adaptive Particle Filter within an Operational NWP Framework
2019
Monthly Weather Review
Particle filters are well known in statistics. They have a long tradition in the framework of ensemble data assimilation (EDA) as well as Markov chain Monte Carlo (MCMC) methods. A key challenge today is to employ such methods in a high-dimensional environment, since the naïve application of the classical particle filter usually leads to filter divergence or filter collapse when applied within the very high dimension of many practical assimilation problems (known as the curse of
doi:10.1175/mwr-d-18-0028.1
fatcat:tyxw7cavrra4dogdxc2g5g643q