Graph product structure for non-minor-closed classes [article]

Vida Dujmović and Pat Morin and David R. Wood
2022 arXiv   pre-print
Dujmović et al. [J. ACM '20] recently proved that every planar graph is isomorphic to a subgraph of the strong product of a bounded treewidth graph and a path. Analogous results were obtained for graphs of bounded Euler genus or apex-minor-free graphs. These tools have been used to solve longstanding problems on queue layouts, non-repetitive colouring, p-centered colouring, and adjacency labelling. This paper proves analogous product structure theorems for various non-minor-closed classes. One
more » ... oteable example is k-planar graphs (those with a drawing in the plane in which each edge is involved in at most k crossings). We prove that every k-planar graph is isomorphic to a subgraph of the strong product of a graph of treewidth O(k^5) and a path. This is the first result of this type for a non-minor-closed class of graphs. It implies, amongst other results, that k-planar graphs have non-repetitive chromatic number upper-bounded by a function of k. All these results generalise for drawings of graphs on arbitrary surfaces. In fact, we work in a more general setting based on so-called shortcut systems, which are of independent interest. This leads to analogous results for certain types of map graphs, string graphs, graph powers, and nearest neighbour graphs.
arXiv:1907.05168v4 fatcat:up4bm7ozlbebvetozvedvw7tiu