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A Note on the Maximum Flow Through a Network* 
P. ELIASt, A. FEINSTEINI, AND C. E. SHANNON! 

Summary--This note discusses the problem of maximizing the 
rate of flow from one terminal to another, through a network which 
consists of a number of branches, each of which has a !imited capa- 
city. The main result is a theorem: The maximum possible flow from 
left to right through a network is equal to the minimum value among 
all simple cut-sets. This theorem is applied to solve a more general 
problem, in which a number of input nodes and a number of output 
nodes are used. 
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ONSIDER a two-terminal network such as that 
of Fig. 1. The branches of the network might 
represent communication channels, or, more 

generally, any conveying system of limited capacity as, 
for example, a railroad system, a power feeding system, 
or a network of pipes, provided in each case it is possible 
to assign a definite maximum allowed rate of flow over a 
given branch. The links may be of two types, either one 
directional (indicated by arrows) or two directional, in 
which case flow is allowed in either direction at anything 
up to maximum capacity. At the nodes or junction points 
of the network, any redistribution of incoming flow into 
the outgoing flow is allowed, subject only to the re- 
striction of not exceeding in any branch the capacity, and 
of obeying the Kiichhoff law that the total (algebraic) 
flow into a node be zero. Note that in the case of infor- 
mation flow, this may require arbitrarily large delays at 
each node to permit recoding of the output signals from 
that node. The problem is to evaluate the maximum 
possible flow through the network as a whole, entering at 
the left terminal and emerging at the right terminal. 

0 

7 

-< 

3 

b 

5 cl 

I f 
Fig. 1 

The answer can be given in terms of cut-sets of the 
network. A cut-set of a two-terminal network is a set of 
branches such that when deleted from the network, the 
network falls into two or more unconnected parts with 
the two terminals in different parts. Thus, every path 
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from one terminal to the other in the original network 
passes through at least one branch in the cut-set. In the 
network above, some examples of cut-sets are (d, e, f), 
and (b, c, e, g, h), (d, g, h, i) . By a simple cut-set we will 
mean a cut-set such that if any branch is omitted it is no 
longer a cut-set. Thus (d, e, f) and (b, c, e, g, h) are simple 
cut-sets while (d, g, h, ;) is not. When a simple cut-set is 
deleted from a connected two-terminal network, the net- 
work falls into exactly two parts, a left part containing the 
left terminal and a right part containing the right terminal. 
We assign a value to a simple cut-set by taking the sum of 
capacities of branches in the cut-set, only counting 
capacities, however, from the left part to the right part 
for branches that are unidirectional. Note that the 
direction of an unidirectional branch cannot be deduced 
from its appearance in the graph of the network. A branch 
is directed from left to right in a minimal cut-set if, and 
only if, the arrow on the branch points from a node in the 
left part of the network to a node in the right part. Thus, 
in the example, the cut-set (d, e, f) has the value 5 + 1 = 6, 
the cut-set (b, c, e, g, h) has value 3 + 2 + 3 + 2 = 10. 

Theorem: The maximum possible flow from left to right 
through a net,work is equal to the minimum value among 
all simple cut-sets. 

This theorem may appear almost obvious on physical 
grounds and appears to have been accepted without proof 
for some time by workers in communication theory. 
However, while the fact that this flow cannot be exceeded 
is indeed almost trivial, the fact that it can actually be 
achieved is by no means obvious. We understand that 
proofs of the theorem have been given by Ford and 
Fulkerson’ and Fulkerson and Dantzig.2 The following 
proof is relatively simple, and we believe different in 
principle. 

To prove first that the minimum cut-set flow cannot be 
exceeded, consider any given flow pattern and a minimum- 
valued cut-set C. Take the algebraic sum X of flows from 
left to right across this cut-set. This is clearly less than or 
equal to the value V of the cut-set, since the latter would 
result if all paths from left to right in C were carrying 
full capacity, and those in the reverse direction were 
carrying zero. Now add to S the sum of the algebraic 
flows into all nodes in the right-hand group for the cut- 
set C. This sum is zero because of the Kirchhoff law 
constraint at each node. Viewed another way, however, 
we see that it cancels out each flow contributing to S, 
and also that each flow on a branch with both ends in the 
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right hand group appears with both plus and minus signs 
and therefore cancels out. The only term left, therefore, 
which is not cancelled is the flow out of the right hand 
terminal, that is to say, the total flow F through the 
network. We conclude, then that F 5 8. 

We now prove the more interesting positive assertion 
of the theorem: That a flow pattern can be found which 
actually achieves the rate I’. From any given network 
with minimum cut-set value V it is possible to construct 
what we will call a reduced network with the properties 
listed below. 

1) The graph of the reduced network is the same as 
that of the original network except possibly that 
some of the branches of the original network are 
missing (zero capacity) in the reduced network. 

2) Every branch in the reduced network has a capacity 
equal to or less than the corresponding branch of the 
original network. 

3) Every branch of the reduced network is in at least 
one cut-set of value V, and V is the minimum value 
cut-set for the reduced network. 

A reduced network may be constructed as follows. If 
there is any branch which is not in some minimum cut-set, 
reduce its capacity until either it is in a minimum cut-set 
or the value reaches zero. Next, take any other branch not 
in a minimum cut-set and perform the same operation. 
Continue in this way until no branches remain which are 
not in minimum cut-sets. The network then clearly 
satisfies the condition. In general, there will be many 
different reduced networks obtainable from a given net- 
work depending on the order in which the branches are 
chosen. If a satisfactory flow pattern can be found for a 
reduced network, it is clear that the same flow pattern 
will be satisfactory in the original network, since both the 
Kirchhoff condition and the capacity limitation will be 
sat,isfied. Hence, if we prove the theorm for reduced 
networks, it will be true in general. 

The proof will proceed by an induction on the number 
of branches. First note that if every path through a rc- 
duced network contains only two or less elements, the 
network is of the form shown typically in Fig. 2. In 

Fig. 2 

general, such a network consists of a paralleling of series 
subnetworks, these series combinations being at most 
two long with or without arrows from left to right. It is 
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obvious that for such a reduced network, the theorem is 
true. It is only necessary to load up each branch to 
capacity. Now suppose the theorem true for all reduced!. 
networks with less than n nodes. We will then show thaij 
it is true for any reduced network with n nodes. 

Either the given reduced network with n nodes has a 
pat,h from left to right of length at least three, or it is of 
the type just described. In the latter case the theorem is 
true, as mentioned. In the former case, taking the second 
branch on a path of length three, we have an element 
running between internal nodes. There exists (since the 
network is reduced) a minimum cut-set containing this 
branch. Replace each branch in the cut-set by two 
branches in series, each with the same capacity as the 
original branch. Now identify (or join together) all of 
these newly-formed middle nodes as one single node. 
The network then becomes a series connection of two 
simpler networks. Each of these has the same minimum 
cut-set value V since they each contain a cut,-set corre- 
sponding to C, and furthermore neither can contain 
higher-valued cut-sets since the operation of identifying 
nodes only eliminates and cannot introduce new cut-sets. 

Each of the two networks in series contains a number 
of branches smaller than n. This is evident because of the 
path of length at least three from the left terminal to the 
right terminal. This path implies the existence of a branch 
in the left group which does not appear in the right group 
and conversely. Thus by inductive assumption, a satis- 
factory flow pattern with total flow V can be set up in< 
each of these networks. It is clear, then, that when the 
common connecting node is separated into its original 
form, the same flow pattern is satisfactory for the original 
network. This concludes the proof. 

It is interesting that in a reduced network each branch 
is loaded to its full capacity a,nd the direction of flow is 
determined by any minimum cut-set through a branch. 
In nonreduced networks there is, in general, some freedom 
in the amount of flow in branches and even, sometimes, 
in the direction of flow. 

Fig. 3 

A more general problem concerning flow through a 
network can be readily reduced to the above result. 
Suppose we have a network with a number of input nodec 
and a number of output nodes as in Fig. 3. The three nodes * 
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on the left are inputs and it is desired to introduce two, 
three, and six units of flow at these points. The nodes on 
the right are outputs and it is desired to deliver three and 
eight units at these points. The problem is to find con- 
ditions under which this is possible. 

This problem may be reduced to the earlier one by 
adding a channel for each input to a common left-hand 
node, the capacity of the channel being equal to the input 
flow, and also introducing channels from the outputs to a 
common right-hand node with capacities equal to the out- 
put flow. In the particular case this leads to Fig. 4. The 
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network obtained in this way from the original problem 
will be called the augmented network. 

It is easy to show that necessary and sufficient con- 
ditions for solving this multiple input multiple output 
problem are the following: 

1) The sum of the input flows must, equal the sum of 
the output flows. Let this sum be C. 

2) The minimum cut-set in the augmented network 
must, have a value C. 

To prove these, note that the necessity of 1 is obvious and 
that of 2 follows by assuming a flow pattern in the origins1 
network satisfying the conditions. This can be translated 
into a flow pattern in the augmented network, and using 
the theorem, this implies no cut-set with value less than C. 
Since there are cut-sets with value C (those through the 
added branches), the minimum cut-set value is equal to C. 

The sufficiency of the conditions follows from noting 
that 2 implies, using the theorem, that a flow pattern can 
be set up in the augmented network with C in at the left 
and out at the right. Now by Kirchhoff’s law at the right 
and left terminals and using condition 1, each added 
output branch and input branch is carrying a Aow equal 
to that desired. Hence, this flow pattern in the original 
network solves the problem. 
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Rectification of Two Signals in Random Noise* 
L. LORNE CAMPBELLt 

Summary-The spectrum of the output of a half-wave rectifier 
is derived for an input which is the sum of random noise and two 
sinusoidal signals of different frequencies. The method used is 
the characteristic function method described by Rice. The com- 
ponents of the output spectrum are given as infinite series of 
hypergeometric functions. If both the input signals .are small 
compared with the noise, it is shown that the ratio of the output 
signal power at the difference frequency to the output noise power 
is proportional to the product of the input signal-to-noise power 
ratios at the two frequencies. If one of the input signals is very 
large compared with the noise, it is shown that the other signal 
and the noise are translated in frequency without alteration of 
the signal-to-noise ratio. A correction factor is obtained for the 
case where the large signal is not quite large enough. Finally, the 
output signal-to-noise ratio of a single-sideband detector is calcu- 
lated as a function of the input signal-to-noise ratio, when the 
sideband amplitude is one-half the carrier amplitude. 
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LIST OF PRINCIPAL SYMBOLS 

P, Q-amplitudes of input signals of frequencies p/2n, 
d2~. 

V(t)--total input voltage. 
V,(t) = P cos pt + Q cos @--total input signal. 
V,(t)-input noise voltage. 
OL, v-rectifier parameters, defined by I = c~V” for V > 0, 

I = 0 for V < 0 where V is the input and I the output. 
w(f)-power spectrum of input noise. 
#,-input noise power. 
#7 = J$ w(f) cos 2rf7 df-autocorrelation function of 

input noise. 
q(T)-autocorrelation function of the rectifier output. 
@,(T)-autocorrelation function of the portion of the 

rectifier output with a discrete spectrum. 


