A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2020; you can also visit the original URL.
The file type is application/pdf
.
CARAFE++: Unified Content-Aware ReAssembly of FEatures
[article]
2020
arXiv
pre-print
Feature reassembly, i.e. feature downsampling and upsampling, is a key operation in a number of modern convolutional network architectures, e.g., residual networks and feature pyramids. Its design is critical for dense prediction tasks such as object detection and semantic/instance segmentation. In this work, we propose unified Content-Aware ReAssembly of FEatures (CARAFE++), a universal, lightweight and highly effective operator to fulfill this goal. CARAFE++ has several appealing properties:
arXiv:2012.04733v1
fatcat:qyic2r2krvavxl3qxkvqwhbuzy