CoRg: Commonsense Reasoning Using a Theorem Prover and Machine Learning

Sophie Siebert, Frieder Stolzenburg
unpublished
Commonsense reasoning is an everyday task that is intuitive for humans but hard to implement for computers. It requires large knowledge bases to get the required data from, although this data is still incomplete or even inconsistent. While machine learning algorithms perform rather well on these tasks, the reasoning process remains a black box. To close this gap, our system CoRg aims to build an explainable and well-performing system, which consists of both an explainable deductive derivation
more » ... uctive derivation process and a machine learning part. We conduct our experiments on the Copa question-answering benchmark using the ontologies WordNet, Adimen-SUMO, and ConceptNet. The knowledge is fed into the theorem prover Hyper and in the end the conducted models will be analyzed using machine learning algorithms, to derive the most probable answer.
doi:10.29007/lt5p fatcat:xukcbvayj5h63kd2mkl2sgjpxm