Joint Unsupervised Deformable Spatio-Temporal Alignment of Sequences

Lazaros Zafeiriou, Epameinondas Antonakos, Stefanos Zafeiriou, Maja Pantic
2016 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)  
Typically, the problems of spatial and temporal alignment of sequences are considered disjoint. That is, in order to align two sequences, a methodology that (non)-rigidly aligns the images is first applied, followed by temporal alignment of the obtained aligned images. In this paper, we propose the first, to the best of our knowledge, methodology that can jointly spatio-temporally align two sequences, which display highly deformable texture-varying objects. We show that by treating the problems
more » ... of deformable spatial and temporal alignment jointly, we achieve better results than considering the problems independent. Furthermore, we show that deformable spatio-temporal alignment of faces can be performed in an unsupervised manner (i.e., without employing face trackers or building person-specific deformable models).
doi:10.1109/cvpr.2016.368 dblp:conf/cvpr/ZafeiriouAZP16 fatcat:6shb6chb35ehrbuygocv4rg2qe