Integer points enumerator of hypergraphic polytopes

Marko Pesovic
2021 Publications de l'Institut Mathématique (Beograd)  
For a hypergraphic polytope there is a weighted quasisymmetric function which enumerates positive integer points in its normal fan and determines its f-polynomial. This quasisymmetric function invariant of hypergraphs extends the Stanley chromatic symmetric function of simple graphs. We consider a certain combinatorial Hopf algebra of hypergraphs and show that universal morphism to quasisymmetric functions coincides with this enumerator function. We calculate the f-polynomial of uniform
more » ... of uniform hypergraphic polytopes.
doi:10.2298/pim200205001p fatcat:2p27j6og6vgirkojko7qzrswhq