A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2021; you can also visit the original URL.
The file type is application/pdf
.
Приближенное представление дилогарифмами решения одной вариационной краевой задачи для круга при граничном условии Неймана
2021
Nauka i Tehnika
It is known that boundary value problems for the Laplace and Poisson equations are equivalent to the problem of the calculus of variations – the minimum of an integral for which the given partial differential equation is the Euler – Lagrange equation. For example, the problem of the minimum of the Dirichlet integral in the unit disc centered at the origin on some admissible set of functions for given values of the normal derivative on the circle is equivalent to the Neimann boundary value
doi:10.21122/2227-1031-2021-20-2-168-172
fatcat:m2ppkn4xjng75bfwe6zqreafgm