A copy of this work was available on the public web and has been preserved in the Wayback Machine. The capture dates from 2018; you can also visit <a rel="external noopener" href="https://link.springer.com/content/pdf/10.1007%2F978-3-642-04268-3_81.pdf">the original URL</a>. The file type is <code>application/pdf</code>.
Attribute vector guided groupwise registration
<span title="">2010</span>
<i title="Elsevier BV">
<a target="_blank" rel="noopener" href="https://fatcat.wiki/container/sa477uo7lveh7hchpikpixop5u" style="color: black;">NeuroImage</a>
</i>
Groupwise registration has been recently introduced for simultaneous registration of a group of images with the goal of constructing an unbiased atlas. To this end, direct application of information-theoretic entropy measures on image intensity has achieved various successes. However, simplistic voxelwise utilization of image intensity often neglects important contextual information, which can be provided by more comprehensive geometric and statistical features. In this paper, we employ
<span class="external-identifiers">
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuroimage.2010.01.040">doi:10.1016/j.neuroimage.2010.01.040</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pubmed/20097291">pmid:20097291</a>
<a target="_blank" rel="external noopener" href="https://pubmed.ncbi.nlm.nih.gov/PMC2839051/">pmcid:PMC2839051</a>
<a target="_blank" rel="external noopener" href="https://fatcat.wiki/release/ohrilhwbezhrrauusb4a72uoja">fatcat:ohrilhwbezhrrauusb4a72uoja</a>
</span>
more »
... e vectors, instead of image intensities, to guide groupwise registration. In particular, for each voxel, the attribute vector is computed from its multiple-scale neighborhoods to capture geometric information at different scales. Moreover, the probability density function (PDF) of each attribute in the vector is then estimated from the local neighborhood, providing a statistical summary of the underlying anatomical structure. For the purpose of registration, Jensen-Shannon (JS) divergence is used to measure the PDF dissimilarity of each attribute at corresponding locations of different individual images. By minimizing the overall JS divergence in the whole image space and estimating the deformation field of each image simultaneously, we can eventually register all images and build an unbiased atlas. Experimental results indicate that our method yields better registration quality, compared with a popular groupwise registration method.
<a target="_blank" rel="noopener" href="https://web.archive.org/web/20180728150738/https://link.springer.com/content/pdf/10.1007%2F978-3-642-04268-3_81.pdf" title="fulltext PDF download" data-goatcounter-click="serp-fulltext" data-goatcounter-title="serp-fulltext">
<button class="ui simple right pointing dropdown compact black labeled icon button serp-button">
<i class="icon ia-icon"></i>
Web Archive
[PDF]
<div class="menu fulltext-thumbnail">
<img src="https://blobs.fatcat.wiki/thumbnail/pdf/92/bb/92bb6db69f61702b2998cf339837857f1d9b6ecf.180px.jpg" alt="fulltext thumbnail" loading="lazy">
</div>
</button>
</a>
<a target="_blank" rel="external noopener noreferrer" href="https://doi.org/10.1016/j.neuroimage.2010.01.040">
<button class="ui left aligned compact blue labeled icon button serp-button">
<i class="unlock alternate icon" style="background-color: #fb971f;"></i>
elsevier.com
</button>
</a>
<a target="_blank" rel="external noopener" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2839051" title="pubmed link">
<button class="ui compact blue labeled icon button serp-button">
<i class="file alternate outline icon"></i>
pubmed.gov
</button>
</a>